K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

\(x^2-2\sqrt{2x^2-4x+3}=2x-3\)

<=>  \(x^2-2x+3-2\sqrt{2x^2-4x+3}=0\)

<=>  \(2x^2-4x+3+3-4\sqrt{2x^2-4x+3}=0\)    (*)

Dat:   \(\sqrt{2x^2-4x+3}=t\ge0\)

Khi đó pt (*) trở thành:

   \(t^2-4t+3=0\)

<=>   \(\left(t-1\right)\left(t-3\right)=0\)

<=>   \(\orbr{\begin{cases}t=1\\t=3\end{cases}}\)

đến đây thay vào, ban tư lm not nhe

1 tháng 12 2018

Nhân cả 2 vế với 2.

\(2x^2-4\sqrt{2x^2-4x+3}=4x-6\)

<=> \(2x^2-4x+3-4\sqrt{2x^2-4x+3}+3=0\)

đặt : \(\sqrt{2x^2-4x+3}=t\left(t\ge0\right)\)

pt <=> t^2-4t+3=0 

Đến đây em làm tiếp nhé:)

3 tháng 11 2017

a, \(x.\sqrt{\frac{2}{5}}\) = \(\sqrt{x^2}.\sqrt{\frac{2}{5}}\) = \(\sqrt{\frac{x^2.2}{5}}\)

b, \(\left(x-5\right).\sqrt{\frac{x}{25-x^2}}\)\(\sqrt{\left(x-5\right)^2}\)\(\sqrt{\frac{x}{\left(5-x\right)\left(5+x\right)}}\) = \(\sqrt{\frac{\left(x-5\right)^2.x}{\left(x-5\right)\left(x+5\right)}}\)\(\sqrt{\frac{x.\left(x-5\right)}{x+5}}\)

c,\(x.\sqrt{\frac{7}{x^2}}\) = \(\sqrt{x^2}\)\(\sqrt{\frac{7}{x^2}}\) = \(\sqrt{\frac{x^2.7}{x^2}}\) = \(\sqrt{7}\)

13 tháng 8 2016

Đặt \(A=\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)

Điều kiện xác định : \(\begin{cases}x\ge\frac{3}{2}\\y\ge2\\z\ge\frac{1}{3}\end{cases}\)

Ta có : \(A=\left(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}-2\right)+\left(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}-4\right)+\left(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}-8\right)+14\)

\(=\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}+\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}+\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}+14\)

\(=\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}+14\ge14\)

Dấu "=" xảy ra khi \(\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}\) (TMĐK)

Vậy Min A = 14 <=> (x;y;z) = (2;6;\(\frac{17}{3}\))

14 tháng 8 2016

mình vô cùng cảm ơn bạn