Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(243^5=\left(3^5\right)^5=3^{25}\)
\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)
mà \(3^{25}>3^{16}\)
nên \(243^5>3\cdot27^5\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà \(5^{20}< 5^{21}\)
nên \(625^5< 125^7\)
c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)
mà \(8242408^{101}>91809^{101}\)
nên \(202^{303}>303^{202}\)
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
Ta thấy : \(2222^{3333}vs2^{300}:\hept{\begin{cases}2222>2\\3333>300\end{cases}\Rightarrow2222^{3333}>2^{300}}\)
Ta thấy : \(2222^{1111}=1111^{1111}.2^{1111}< 1111^{1111}.1111^{1110}=1111^{2221}\)
Ta thấy : \(54^{10}=\left(3^3\right)^{10}.2^{10}=3^{30}.2^{10}=3^{12}.3^{18}.2^{10}>3^{12}.7^{12}=21^{12}.\)
Ta có : \(N=2022.2024\)
\(N=\left(2023-1\right)\left(2023+1\right)\)
\(N=2023^2+2023-2023-1\)
\(N=2023^2-1\)
Mà : \(M=2023.2023=2023^2\)
\(\Rightarrow M>N\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
phải làm thế này:
6255=(252)5=2510=255x255
1755=(25x7)5=255x75
vì 255=255 mà 255>75 nên 6255>1757
\(To thay\)\(:\)
\(625^5< 175^7\)
\(nha^{ }\)
\(chac\)\(the\)