K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

30 tháng 9 2021

\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)

\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)

18 tháng 1 2019

Đáp án C

Ta thấy câu 1), 2) và 4) là các mệnh đề vì ta có thể xét được tính đúng sai của chúng.

Câu 3) không khải mệnh đề vì ta chưa xét được tính đúng sai của nó, chỉ khi cho x một giá trị nào đó thì ta mới nhận được một mệnh đề.

Vậy có 3 mệnh đề.

28 tháng 1 2019

Đáp án C

Ta thấy câu 1), 2) và 4) là các mệnh đề vì ta có thể xét được tính đúng sai của chúng.

Câu 3) không khải mệnh đề vì ta chưa xét được tính đúng sai của nó, chỉ khi cho x một giá trị nào đó thì ta mới nhận được một mệnh đề.

Vậy có 3 mệnh đề.

25 tháng 12 2020

a, ĐK: \(x\ge\dfrac{1}{5}\)

\(pt\Leftrightarrow\sqrt{5x^2+x+3}+5x-1-2\sqrt{5x-1}+1+x^2+2x+1=-2\)

\(\Leftrightarrow\sqrt{5x^2+x+3}+\left(\sqrt{5x-1}-1\right)^2+\left(x+1\right)^2=-2\)

\(\Rightarrow\) Phương trình vô nghiệm

16 tháng 1 2018

Đáp án: D

(x2 - 4) (x2 - 1) = 0  x = ±2; x =  ±1 nên A = {-2; -1; 1; 2}

(x2 - 4) (x2 + 1) = 0  x2 - 4 = 0 ⇔ x = ±2 nên B = {-2;  2}

x4 - 5x2 + 4)/x = 0  x4 - 5x2 + 4 = 0 ⇔ x = ±2; x =  ±nên D = {-2; -1; 1; 2}

=> A = D

4 tháng 1 2018

5 x 2 + 4 x − x 2 − 3 x − 18 = 5 x 1

ĐK: 5 x 2 + 4 x ≥ 0 x 2 − 3 x − 18 ≥ 0 x ≥ 0 ⇔ x ≥ 0 ,   x ≤ − 4 5 x ≥ 6 ,   x ≤ − 3 x ≥ 0 ⇔ x ≥ 6

Khi đó 1 ⇔ 5 x 2 + 4 x = 5 x + x 2 − 3 x − 18

Dễ thấy x = 6 không là nghiệm phương trình nên với x > 6 ta chia cả hai vế cho x 2 − 6 x > 0 ta được:

2 + 3. x + 3 x 2 − 6 x = 5. x + 3 x 2 − 6 x 2

Đặt x + 3 x 2 − 6 x = t > 0  thì  (2) trở thành 3 t 2 − 5 t + 2 = 0 ⇔ t = 1    ( T M ) t = 2 3    ( T M )

+ Nếu t = 1 thì x + 3 = x 2 − 6 x

⇔ x + 3 = x 2 − 6 x ⇔ x 2 − 7 x − 3 = 0 ⇔ x = 7 + 61 2    ( T M ) x = 7 − 61 2    ( L )

+ Nếu t = 2 3  thì  x + 3 = 2 3 x 2 − 6 x ⇔ x + 3 = 4 9 ( x 2 − 6 x )

⇔ 4 x 2 − 33 x − 27 = 0 ⇔ x = 9    ( T M ) x = − 3 4    ( L )

Vậy phương trình đã cho có tập nghiệm s = 7 + 61 2 ; 9 hay S có 2 phần tử.

Đáp án cần chọn là: D

NV
26 tháng 3 2022

\(f\left(x\right)=\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x^2-5x+6\right)\left(5-x\right)}>0\)

\(\Leftrightarrow\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)\left(5-x\right)}>0\)

Bảng xét dấu:

undefined

Từ bảng xét dấu ta thấy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 5\\\dfrac{3}{2}< x< 2\\3< x< 5\end{matrix}\right.\)