Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2x-1\right)^3=8\)
\(\Leftrightarrow\left(2x-1\right)^3=2^3\)
\(\Leftrightarrow2x-1=2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
b, \(\left(x-1\right)^x+2=\left(x-1\right)^x+4\)
\(\Leftrightarrow\left(x-1\right)^x+2-\left(x-1\right)^x-4=0\)
\(\Leftrightarrow-2\ne0\)=> vô nghiệm
c, \(3^x-1+5.3^{3x}-1=162\)
Đề sai.
Bài làm
a) x² - 3 = 22
=> x² = 25
=> x = + 5
Vậy x = + 5
b) 2x³ + 5 = -11
2x³ = -16
x³ = -8
x = -2
Vậy x = -2
c) ( x + 2 )² = 81
=> x + 2 = 9
=> x = 7
Vậy x = 7
d) ( 2x + 1 )² = 25
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Vậy x = 2
e) 5x + 2 = 625
5x = 623 ( vô lí )
g) ( 2x - 3 )² = 36.
=> 2x - 3 = 6
=> 2x = 9
=> x = 4,5
Vậy x = 4,5
h) ( 2x - 1 )³ = -8
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
Vậy x = -1/2
i) ( x - 1 )x + 2 = ( x - 1 )x + 6
=> [ (x - 1 )x - ( x - 1 )x ] = 6 - 2
=> 0 = 4 ( vô lí )
Vậy x thuộc rỗng.
k) x² + x = 0
=> x( x + 1 ) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
Vậy x = 0 hoặc x = -1
a) \(\frac{-2}{3}x+\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{1}{10}-\frac{1}{5}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{3}{20}\)
1) \(\left|4-2x\right|.\dfrac{1}{3}=\dfrac{1}{3}\)
\(\left|4-2x\right|=\dfrac{1}{3}:\dfrac{1}{3}\)
\(\left|4-2x\right|=\dfrac{1}{3}.3\)
\(\left|4-2x\right|=1\)
=>\(4-2x=\pm1\)
+)\(TH1:4-2x=1\) +)\(TH2:4-2x=-1\)
\(2x=4-1\) \(2x=4-\left(-1\right)\)
\(2x=3\) \(2x=4+1\)
\(x=3:2\) \(2x=5\)
\(x=1,5\) \(x=5:2\)
Vậy x=1,5 \(x=2,5\)
Vậy x=2,5
2) \(\left(-3\right)^2:\left|x+\left(-1\right)\right|=-3\)
\(9:\left|x+\left(-1\right)\right|=-3\)
\(\left|x+\left(-1\right)\right|=9:\left(-3\right)\)
\(\left|x+\left(-1\right)\right|=-3\)
=> \(x+\left(-1\right)\) sẽ không có giá trị nào ( Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng 0 )
Vậy x = \(\varnothing\)
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
1) ( 2x + 1 )2 = 25
=> ( 2x + 1 )2 = 52
=> 2x + 1 = 5 hoặc 2x + 1 = -5
=> 2x = 4 hoặc 2x = -6
=> x = 2 hoặc x = -3
2) 5x+2 = 625
=> 5x+2 = 54
=> x + 2 = 4
=> x = 2
3) ( 2x - 3 )2 = 36
=> ( 2x - 3 )2 = 62
=> 2x - 3 = 6 hoặc 2x - 3 = -6
=> 2x = 9 hoặc 2x = -3
=> x = 9/2 hoặc x = -3/2
4) ( 2x - 1 )3 = -8
=> ( 2x - 1 )3 = ( -2 )3
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
\(f\)) \(32^{-x}.16^x=1024\)
\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)
\(\Leftrightarrow2^{4x-5x}=2^{10}\)
\(\Leftrightarrow2^{-x}=2^{10}\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(g\)) \(3^{x-1}.5+3^{x-1}=162\)
\(3^{x-1}.\left(5+1\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(h\)) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)
\(i\)) \(5^x+5^{x+2}=650\)
\(5^x.\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
a)5x+5x+2=650
2*5x+2=650
2(5x+1)=650
5x+1=650/2
5x+1=325
5x=325-1
5x=324
=>x \(\in\phi\)
b)3x-1+5*3x-1=162
3x-1(1+5)=162
3x-1=162/6
3x-1=27=33
=>x-1=3
x=3+1
x=4
c)(2x-1)6=(1-2x)8
(2x-1)6=(-2x-1)8=(2x-1)8=(2x-1)6*(2x-1)2
=>(2x-1)2=1
2x-1=1
2x=1+1
2x=2
x=2/2
x=1
*)2x-1=0
2x=0+1
2x=1
x=1/2
102,5m2