Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:B.
Với f(x) = x 3 + 5x + 6 thì vì f'(x) = 3 x 2 + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.
\(\overrightarrow{PQ}=\left(-1;-1;4\right)\)
\(\overrightarrow{n_{\left(P\right)}}=\left(3;2;-1\right)\)
\(\Rightarrow\left[\overrightarrow{PQ};\overrightarrow{n_{\left(P\right)}}\right]=\left(-7;11;1\right)\)
\(\Rightarrow\) Mặt phẳng \(\left(\Delta\right)\) nhận \(\left(-7;11;1\right)\) là 1 vtpt
Phương trình:
\(-7\left(x-2\right)+11\left(y-0\right)+1\left(z+1\right)=0\)
\(\Leftrightarrow-7x+11y+z+15=0\)
ĐKXĐ: \(x>3\)
Lấy logarit 2 vế: \(\left(2x^2-7x\right).ln\left(x-3\right)>0\)
\(\Leftrightarrow x\left(2x-7\right)ln\left(x-3\right)>0\)
Bảng xét dấu:
\(\Rightarrow\) Nghiệm của BPT là \(\left[{}\begin{matrix}3< x< \dfrac{7}{2}\\x>4\end{matrix}\right.\)
Ta có:\(5^{x-1}\ge5^{x^2-x-9}\)
\(\Leftrightarrow x-1\ge x^2-x-9\)
\(\Leftrightarrow x^2-2x-8\le0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4\le0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4\ge0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge4\\x\le-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-2\le x\le4\)
\(5.5^{x-1}+5^2.5^{x-1}+5^{x-1}=7^2.7^{x-1}+7.7^{x-1}+7^{x-1}\Rightarrow31.5^{x-1}=57.7^{x-1}\Rightarrow\left(\frac{7}{5}\right)^{x-1}=\frac{57}{31}\Rightarrow x-1=\log_{\frac{7}{5}}\frac{57}{31}\)