K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

bang nhau

Giai:

A=1.3.5.7...97.99=\(\frac{\left(1.3.5...97.99\right).\left(2.4.6...100\right)}{2.4.6...100}\)

=\(\frac{1.2.3.4...99.100}{\left(1.2\right).\left(2.2\right)...\left(2.50\right)}\)

=\(\frac{\left(1.2.3...50\right).\left(51.52...99.100\right)}{\left(1.2.3...49.50\right).2^{50}}\)

=\(\frac{51.52...99.100}{2.2...2.2}\)

=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

mà B=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

Nên A=B

Vậy A=B

1 tháng 5 2017

\(1.3.5.7...97.99=\frac{100!}{2.4.6.8...100}\)

\(=\frac{1.2.3.4...100}{1.2.2.2.3.2...50.2}\)

\(=\frac{51.52.53...100}{2}\)

Vậy \(A=B\)

10 tháng 5 2017

Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)

20 tháng 3 2016

Số chia rút gọn thành 1/51+1/52+...+1/99+1/100

=> biểu thức bằng 1

26 tháng 4 2018

ta có 1/51>1/100

        1/52>1/100

        ..................

        1/100=1/100

\(\Rightarrow\)S=1/51+1/52+...+1/100>(1/100+1/100+...+1/100)=1/100.50=1/2

\(\Rightarrow\)S>\(\frac{1}{2}\)

cái chỗ 1/100+1/100+...+1/100 có 50 số bạn nhá

chúc bạn học tốt~

17 tháng 3 2017

Vì mọi phân số của tổng đều nhỏ hơn 1 nên tổng đó nhỏ hơn 1.

k nha

14 tháng 4 2017

Ta có : 

\(C=1.3.5.7...99\Rightarrow C=\frac{1.3.5.7..99}{2.4.6.8..98}\Rightarrow C=\frac{1.3.5.7..9}{\left(2.2...2\right)\left(1.2.3..50\right)}\)( có 50 chữ số 2 )

\(\Rightarrow C=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

\(\Rightarrow C=D\)

14 tháng 4 2017

C = D nha

chúc bạn học tốt

tk mình nhé

10 tháng 4 2016

xử lí C ta có C=51.52.53.....100/250

ta nhân cả tử và mẫu của C với 1.2.3.........50  thì dc

(1.2.3.4.5.6.........................50).(51.52..............100)

(1.2.3.4...............................50) (2.2...................2) có 50 thừa số 2

tử giữ nguyên xét mẫu ta có (1.2........50).(2.2.......2.2)= (1.2)(2.2)......(50.2)=2.4.6.8......100 vậy triệt tiêu tử cho mẫu thì ta dc c=1.3....97.99

tức C=D