Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2\cdot a^3\cdot a^7\cdot b^2\cdot b\)
\(=\left(a^2\cdot a^3\cdot a^7\right)\cdot\left(b^2\cdot b\right)\)
\(=a^{12}\cdot b^3\)
b) \(b^6\cdot b\cdot c^7\cdot c^8\)
\(=\left(b^6\cdot b\right)\cdot\left(c^7\cdot c^8\right)\)
\(=b^7\cdot c^{15}\)
c) \(a^8\cdot a^9\cdot a\cdot c\cdot c^{20}\)
\(=\left(a^8\cdot a^9\cdot a\right)\cdot\left(c\cdot c^{20}\right)\)
\(=a^{18}\cdot c^{21}\)
d) \(a^2\cdot a^3\cdot b^4\cdot c\cdot c^3\)
\(=\left(a^2\cdot a^3\right)\cdot b^4\cdot\left(c\cdot c^3\right)\)
\(=a^5\cdot b^4\cdot c^4\)
a) Kiểm tra lại nhé
b) \(b^6.b^7.c^8\)
\(=b^{6+7}.c^8=b^{13}.c^8\)
c) \(a^8.a^9.a.c.c^{20}\)
\(=a^{8+9+1}.c^{1+20}\)
\(=a^{18}.c^{21}\)
d) \(a^2.a^3.b^4.c.c^3\)
\(=a^{2+3}.b^4.c^{1+3}\)
\(=a^5.b^4.c^4\)
\(#WendyDang\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2B=2\cdot\left(2^{100}-2^{99}+2^{98}-...+2^2-2\right)\)
\(2B=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(2B+B=2^{101}-2^{100}+...+2^3-2^2+2^{100}-2^{99}+...+2^2-2\)
\(3B=2^{101}-2\)
\(B=\dfrac{2^{101}-2}{3}\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ =\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2\right)\\ =\left(2^2+...+2^{98}+2^{100}\right)-\left(2+...+9^{97}+9^{99}\right)\\ =M+N\left(1\right)\)
Xét \(M=2^2+...+2^{98}+2^{100}\\ 4M=2^4+...+2^{100}+2^{102}\\ 4M-M=2^4+...+2^{100}+2^{102}-2^2-...-2^{98}-2^{100}\\ 3M=2^{102}-2^2\\ M=\dfrac{2^{102}-2^2}{3}\left(2\right)\)
Xét \(N=2+...+2^{97}+2^{99}\\ 4N=2^3+...+2^{99}+2^{101}\\ 4N-N=2^3+...+2^{99}+2^{101}-2-...-2^{97}-2^{99}\\ 3N=2^{101}-2\\ N=\dfrac{2^{101}-2}{3}\left(3\right)\)
Từ `(1);(2)` và `(3)` suy ra
\(B=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ =\dfrac{2^{102}-2^2-2^{101}+2}{3}=\dfrac{2^{101}\left(2-1\right)-2}{3}\\ =\dfrac{2^{101}-2}{3}\)
500-{5.(409-(2³x3-21)²]-1724}
= 500-{5.(409-(8x3-21)²]-1724}
=500-{5.(409-(24-21)²]-1724}
=500-{5.(409-3²)-1724}
=500-{5.(409-9)-1724}
=500-{5.400-1724}
=500-{2000-1724}
=500-276
=224
Hok tốt!
a) \(\left(2x+1\right)^3=27\)
\(\Leftrightarrow2x+1=3\)
\(\Leftrightarrow x=1\)
b) \(\left(2x-1\right)^3=125\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow x=3\)
c) \(\left(x+1\right)^4=\left(2x\right)^4\)
\(\Leftrightarrow x+1=2x\)
\(\Leftrightarrow x=1\)
d) \(\left(2x-1\right)^5=x^5\)
\(\Leftrightarrow2x-1=x\)
\(\Leftrightarrow x=1\)
a. ( 2x + 1 )3 = 27
<=> ( 2x + 1 )3 = 33
<=> 2x + 1 = 3
<=> 2x = 2
<=> x = 1
b. ( 2x - 1 )3 = 125
<=> ( 2x - 1 )3 = 53
<=> 2x - 1 = 5
<=> 2x = 6
<=> x = 3
c. ( x + 1 )4 = 2x4
<=> x + 1 = 2x
<=> x = 1
d. ( 2x - 1 )5 = x5
<=> 2x - 1 = x
<=> x = 1
\(\frac{2}{3}-\frac{1}{5}.\left(\frac{3.x}{2}-\frac{1}{4}\right)=\frac{11}{2}-\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{5}.\left(\frac{3.x}{2}-\frac{1}{4}\right)=\frac{21}{4}\)
\(\Leftrightarrow\frac{1}{5}.\left(\frac{3.x}{2}-\frac{1}{4}\right)=\frac{2}{3}-\frac{21}{4}\)
\(\Leftrightarrow\frac{1}{5}.\left(\frac{3.x}{2}-\frac{1}{4}\right)=\frac{-55}{12}\)
\(\Leftrightarrow\frac{3.x}{2}-\frac{1}{4}=\frac{-55}{12}:\frac{1}{5}\)
\(\Leftrightarrow\frac{3.x}{2}-\frac{1}{4}=\frac{-275}{12}\)
\(\Leftrightarrow\frac{3.x}{2}=\frac{-275}{12}+\frac{1}{4}\)
\(\Leftrightarrow\frac{3.x}{2}=\frac{-68}{3}\)
\(\Leftrightarrow\left(3.x\right).3=-136\)
\(\Leftrightarrow3.x=-136:3\)
\(\Leftrightarrow3.x=\frac{-136}{3}\)
\(\Leftrightarrow x=\frac{-136}{3}:3\)
\(\Leftrightarrow x=\frac{-136}{9}\)
a) B = \(\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{21}{20}=\dfrac{1}{3}.1.....\dfrac{21}{1}=\dfrac{21}{3}=7\)
b) Em chịu, chưa học số âm :)
{47 - [736 : (5 - 3)4]} x 2013
= {47 - [736 : 24]} x 2013
= {47 - [736 : 16]} x 2013
= {47 - 46} x 2013
= 1 x 2013
= 2013