Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a) (3x - 1)(2x + 7) - (x + 1)(6x - 5) = 16
6x2 + 21x - 2x - 7 - 6x2 + 5x - 6x + 5 = 16
(6x2 - 6x2) + (21x - 2x + 5x - 6x) + (-7 + 5) = 16
18x - 2 = 16
18x = 18
x = 1
Vậy x = 1
b) (10x + 9)x - (5x - 1)(2x + 3) = 8
10x2 + 9x - 10x2 - 15x + 2x + 3 = 8
(10x2 - 10x2) + (9x - 15x + 2x) + 3 = 8
-4x + 3 = 8
-4x = 5
x = \(\frac{-5}{4}\)
Vậy x = \(\frac{-5}{4}\)
c) x(x + 1)(x + 6) - x3 = 5x
(x2 + x)(x + 6) - x3 = 5x
x3 + 7x2 + 6x - x3 = 5x
7x2 + 6x = 5x
x(7x + 6) = 5x
=> 7x + 6 = 5
7x = -1
x = \(\frac{-1}{7}\)
Vậy x = \(\frac{-1}{7}\)
d) (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0
21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0
(-15x2 + 15x2) + (21x + 25x - 10x + 6x) + (-35 - 4 - 2) = 0
42x - 41 = 0
42x = 41
x = \(\frac{41}{42}\)
Vậy x = \(\frac{41}{42}\)
\(\Leftrightarrow3x^2-6x-5x+5x^2-8x^2+\left(24\right)\)
\(\Leftrightarrow-11x+24\)
Đề hình như thiếu hả bạn. Nếu không thiếu thì ra kết quả như trên nhé