Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x - 2x + 3 = -56
<=> 2x(1 - 23) = -56
<=> 2x.(- 7) = -56
<=> 2x = 8
<=> 2x = 23
<=> x =3
Vậy x = 3
b) 3x + 1 + 3x = 108
<=> 3x(3 + 1) = 108
<=> 3x = 27
<=> 3x = 33
<=> x = 3
Vậy x = 3
c) 27.3x + 1 = 33x
<=> 33.3x + 1 = 33x
<=> 3x + 4 = 33x
<=> x + 4 = 3x
<=> 2x = 4
<=> x =2
Vậy x = 2
d) 3x + 2 - 3x = 72
<=> 3x(32 - 1) = 72
<=> 3x = 9
<=> 3x = 32
<=> x = 2
e) (x - 5)12 - (x - 5)10 = 0
<=> (x - 5)10[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2=1\end{cases}}\)
Khi (x - 5)10 = 0
<=> x - 5 = 0
<=> x = 5
Khi (x - 5)2 = 1
<=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
Vậy x \(\in\left\{4;5;6\right\}\)
Trả lời:
a. 2x - 2x+3 = - 56
<=> 2x - 2x . 23 = - 56
<=> 2x ( 1 - 23 ) = - 56
<=> 2x . ( - 7 ) = - 56
<=> 2x = 8
<=> 2x = 23
<=> x = 3
Vậy x = 3
b. 3x+1 + 3x = 108
<=> 3x . 3 + 3x = 108
<=> 3x ( 3 + 1 ) = 108
<=> 3x . 4 = 108
<=> 3x = 27
<=> 3x = 33
<=> x = 3
Vậy x = 3
c. 27 . 3x+1 = 33x
<=> 33 . 3x+1 = 33x
<=> 33+x+1 = 33x
<=> 3 + x + 1 = 3x
<=> 4 + x = 3x
<=> x - 3x = - 4
<=> - 2x = - 4
<=> x = 2
Vậy x = 2
d. 3x+2 - 3x = 72
<=> 3x . 32 - 3x = 72
<=> 3x ( 32 - 1 ) = 72
<=> 3x . 8 = 72
<=> 3x = 9
<=> 3x = 32
<=> x = 2
Vậy x = 2
e. (x - 5)12 - (x - 5)10 = 0
<=> ( x - 5 )10 [ ( x - 5 )2 - 1 ] = 0
<=> ( x - 5 )10 = 0 hoặc ( x - 5 )2 - 1 = 0
<=> x - 5 = 0 hoặc ( x - 5 )2 = 1
<=> x = 5 hoặc x - 5 = 1 hoặc x - 5 = - 1
<=> x = 5 hoặc x = 6 hoặc x = 4
Vậy x = 4; x = 5; x = 6
1)15x-9x+2x=(15-9+2)x=8x=72
x=72:8=9
2)3x+2+3x=3x.32+3x=3x.9+3x.1=3x.(9+1)=3x.10=10
3x=10:10=1
3x=1=30
=>x=0
ko hiểu thì ? đừng k sai nha!
a, => 3^x.(6+4.3) = 100-72
=> 3^x.18 = 18
=> 3^x = 18:18 = 1
=> 3^x = 3^0
=> x=0
b, => 5^x.(5+4.5) = -12+175-38
=> 5^x.25 = 125
=> 5^x = 125:25 = 5
=> 5^x = 5^1
=> x=1
Tk mk nha
a) \(6\cdot3^x+4\cdot3^{x+1}=100+\left(-72\right)\)
\(\Leftrightarrow6\cdot3^x+4\cdot3^x\cdot3=100-72\)
\(\Leftrightarrow6\cdot3^x+12\cdot3^x=28\)
\(\Leftrightarrow18\cdot3^x=28\Leftrightarrow3^x=\frac{14}{9}\)
Phần a) bn xem lại đề bài nhé!!
b) \(5\cdot5^x+4\cdot5^{x+1}=\left(-12\right)+175+\left(-38\right)\)
\(\Leftrightarrow5^{x+1}+4\cdot5^{x+1}=175-12-38\)
\(\Leftrightarrow5\cdot5^{x+1}=125\Leftrightarrow5^{x+1}=25\)
\(\Leftrightarrow5^{x+1}=5^2\Leftrightarrow x+1=2\Leftrightarrow x=1\)
Vậy x=1
125(28+72)-25(3^2.4+64)
=125.100-25(9.4+64)
=125.100-25.(36+64)
=125.100-25.100
=12500-2500
=10000
2x-1.3x+y-1=72 =23.32
=> x-1 =3 => x =4
=> x+y-1 =2 => y =2+1 -4 =-1 loại vì x,y thuộc N
Vậy không có x,y thuộc N nào thỏa mãn
\(3^x+5.3^{x-1}=72\)
=> \(3^{x-1}.3+5.3^{x-1}=72\)
=> \(3^{x-1}.\left(3+5\right)=72\)
=> \(3^{x-1}.8=72\)
=> \(3^{x-1}=72:8\)
=> \(3^{x-1}=9\)
=> \(3^{x-1}=3^2\)
=> \(x-1=2\)
=> \(x=2+1\)
=> \(x=3\)
Chúc học tốt
1/ \(\left\{{}\begin{matrix}\left(x-2\right)^{72}\ge0\\\left(y+1\right)^{70}\ge0\end{matrix}\right.\)
Mà \(\left(x-2\right)^{72}+\left(y+1\right)^{70}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{72}=0\\\left(y+1\right)^{70}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy ...
2/ \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|y-3\right|\ge0\end{matrix}\right.\)
Mà \(\left|x+1\right|+\left|y-3\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=0\\\left|y-3\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)
Vậy ...
3/ \(\left\{{}\begin{matrix}\left(2x-10\right)^{100}\ge0\\\left(x-y\right)^{102}\ge0\end{matrix}\right.\)
Mà \(\left(2x-10\right)^{100}+\left(x-y\right)^{102}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-10\right)^{100}=0\\\left(x-y\right)^{102}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-10=0\\x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy ....
4/ \(\left\{{}\begin{matrix}\left|2x+8\right|\ge0\\\left|y+x\right|\ge0\end{matrix}\right.\)
Mà \(\left|2x+8\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|2x+8\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+8=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=8\end{matrix}\right.\)
Vậy ..
\(\Leftrightarrow3.3^x-\dfrac{3^x}{3}=72\)
\(\Leftrightarrow9.3^x-3^x=3.72\)
\(\Leftrightarrow8.3^x=3.8.3^2\)
\(\Leftrightarrow3^x=3^3\Rightarrow x=3\)