Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a, => x + 1 = 0 => x = -1
y - 1 = 0 => y = 1
z - 2 = 0 => z = 2
=> x,y,z thuộc { -1; 1; 2 }
a,2x+5 = 0 hoặc 5-x=0 ( còn lại tự tính)
b,,x2-4=0 hoặc x2-36=0 ( còn lại tự tính)
tương tự như vậy làm câu c
d, bài này dài ( không làm )
e, ......( dài)
f, x={4;5;6}
(x+1)2=9
(x+1)2=32
=>x+1=3
x=2
(x-1)3=-125
=>(x-1)3=-53
=>x-1=-5
x=-5+1
x=-4
may bai kia giai tuong tu nhe minh met qua
1) (x+1)2 =9
=> x+1=3 hoặc x+1 = -3 (vì mũ chẵn)
=> x=2 hoặc x= -4
2) (x-1)3 = -125
=> x-1=-5
=> x=-4
4) Do x,y thuộc Z nên x-3 thuộc Z và y+1 thuộc Z
=> (x-3;y+1) thuộc {(-2;-1);(-1;-2);(1;2);(2;1)}
=> (x;y) thuộc {(1;-2);(2;-3);(2;1);(5;0)}
Bạn xem có đúng ko nhé rồi tick cho mk nha
1/ \(\left\{{}\begin{matrix}\left(x-2\right)^{72}\ge0\\\left(y+1\right)^{70}\ge0\end{matrix}\right.\)
Mà \(\left(x-2\right)^{72}+\left(y+1\right)^{70}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{72}=0\\\left(y+1\right)^{70}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy ...
2/ \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|y-3\right|\ge0\end{matrix}\right.\)
Mà \(\left|x+1\right|+\left|y-3\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=0\\\left|y-3\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)
Vậy ...
3/ \(\left\{{}\begin{matrix}\left(2x-10\right)^{100}\ge0\\\left(x-y\right)^{102}\ge0\end{matrix}\right.\)
Mà \(\left(2x-10\right)^{100}+\left(x-y\right)^{102}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-10\right)^{100}=0\\\left(x-y\right)^{102}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-10=0\\x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy ....
4/ \(\left\{{}\begin{matrix}\left|2x+8\right|\ge0\\\left|y+x\right|\ge0\end{matrix}\right.\)
Mà \(\left|2x+8\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|2x+8\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+8=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=8\end{matrix}\right.\)
Vậy ..