Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
a) Sửa đề:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)
Ta có:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ
= 5ⁿ.(5² + 5 + 1)
= 5.31 ⋮ 31
Vậy A ⋮ 31
b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺² - 2ⁿ
= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)
= 3.10 + 2ⁿ⁻¹.2.5
= 10.(3 + 2ⁿ⁻¹) ⋮ 10
Vậy B ⋮ 10
a) Gọi ƯCLN của 3n+2 và 5n+3 là m
3n+2 chia hết cho m<=>15n+10 chia hết cho m
5n+3 chia hết cho m<=>15n+9 chia hết cho m
=>15n+10-(15n+9) chia hết cho m
1 chia hết cho m
m=1
=> ƯCLN của 3n+2 và 5n+3 là 1=>3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|
\(2n+1=a^2\)
Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)
\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ
Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)
\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn
\(\Rightarrow\)n là số chẵn
Vì n là số chẵn nên 3a+1 là số lẻ
\(\Rightarrow3n+1=\left(2p+1\right)^2\)
\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)
Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)
Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)
=(3n+3n)+(3+3)+(5n+5n)+(1+2)
=(3n)2+6+(5n)2+3
=32n2+52n2+6+3
=(9+25)n2+9
=34n2+9