Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `A=a. 1/3 + a. 1/4 - a.1/6 = a. (1/3+1/4 -1/6)=a. 5/12`
Thay `a=-3/5: A=-3/5 . 5/12 =-1/4`
b) `B=b. 5/6+ b. 3/4-b. 1/2=b.(5/6+3/4-1/2)=b. 13/12`
Thay `b=12/13: B=12/13 . 13/12=1`.
a) Ta có: \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\)
\(=a\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\)
\(=a\cdot\left(\dfrac{4}{12}+\dfrac{3}{12}-\dfrac{2}{12}\right)\)
\(=a\cdot\dfrac{5}{12}\)
\(=\dfrac{-3}{5}\cdot\dfrac{5}{12}=\dfrac{-1}{4}\)
b) Ta có: \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\)
\(=b\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\)
\(=b\cdot\left(\dfrac{10}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\)
\(=b\cdot\dfrac{5}{4}\)
\(=\dfrac{12}{13}\cdot\dfrac{5}{4}=\dfrac{60}{52}=\dfrac{15}{13}\)
a) \(a:b=2\dfrac{2}{5}:\dfrac{4}{5}=\dfrac{12}{5}\cdot\dfrac{5}{4}=3:1\)
b) \(a:b=7.7:1.1=7:1\)
c) \(a:b=\dfrac{0.7\cdot100}{50}=\dfrac{70}{50}=\dfrac{7}{5}\)
d) \(a:b=\dfrac{3}{5}\cdot\dfrac{100}{120}=\dfrac{1}{2}\)
e) \(a:b=\dfrac{\dfrac{3}{2}\cdot60}{\dfrac{1}{2}}=3\cdot60=180:1\)
g) \(a=66\dfrac{2}{3}\%m=\dfrac{200}{3}\cdot\dfrac{1}{100}m=\dfrac{2}{3}m\)
\(b=0.5\%km=0.005km=5m\)
Do đó: \(a:b=\dfrac{2}{3}:5=\dfrac{2}{15}\)
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
a: \(A=\dfrac{19}{9}+\dfrac{4}{11}+\dfrac{2}{3}=\dfrac{209}{99}+\dfrac{44}{99}+\dfrac{66}{99}=\dfrac{319}{99}\)
b: \(B=\dfrac{-50}{60}+\dfrac{-35}{60}+\dfrac{12}{60}=\dfrac{-73}{60}\)
c: \(C=\dfrac{-27}{36}+\dfrac{132}{36}+\dfrac{10}{36}=\dfrac{115}{36}\)
d: \(D=\dfrac{-19}{3}+\dfrac{2}{3}-\dfrac{4}{5}=\dfrac{-17}{3}-\dfrac{4}{5}=\dfrac{-85-12}{15}=-\dfrac{97}{15}\)
a) Ta có: \(A=\dfrac{4}{7\cdot31}+\dfrac{6}{7\cdot41}+\dfrac{9}{10\cdot41}+\dfrac{7}{10\cdot57}\)
\(=\dfrac{20}{31\cdot35}+\dfrac{30}{35\cdot41}+\dfrac{45}{41\cdot50}+\dfrac{35}{50\cdot57}\)
\(=5\left(\dfrac{4}{31\cdot35}+\dfrac{6}{35\cdot41}+\dfrac{9}{41\cdot50}+\dfrac{7}{50\cdot57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{35}+\dfrac{1}{35}-\dfrac{1}{41}+\dfrac{1}{41}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
Ta có: \(B=\dfrac{7}{19\cdot31}+\dfrac{5}{19\cdot43}+\dfrac{3}{23\cdot43}+\dfrac{11}{23\cdot57}\)
\(=\dfrac{14}{31\cdot38}+\dfrac{10}{38\cdot43}+\dfrac{6}{43\cdot46}+\dfrac{22}{46\cdot57}\)
\(=2\left(\dfrac{7}{31\cdot38}+\dfrac{5}{38\cdot43}+\dfrac{3}{43\cdot46}+\dfrac{11}{46\cdot57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{38}+\dfrac{1}{38}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
Suy ra: \(\dfrac{A}{B}=\dfrac{5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)}{2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)}=\dfrac{5}{2}\)
\(A=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-20\cdot11}{2\cdot9}=\dfrac{-110}{9}\)
\(B=\dfrac{2}{4}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)
=1/2*4/55
=2/55
a) \(A=\dfrac{7}{8}\left(-\dfrac{5}{9}-\dfrac{4}{9}\right)+5\dfrac{7}{8}\)
\(A=\dfrac{7}{8}.\left(-1\right)+5\dfrac{7}{8}=5\dfrac{7}{8}-\dfrac{7}{8}=5\).
\(B=\dfrac{1}{4}.\dfrac{8}{5}.\dfrac{25}{16}.\dfrac{-7}{4}=\dfrac{-35}{32}\)
\(\Rightarrow3\left(a-b\right)=5\left(a-b\right)\)
\(\Leftrightarrow2\left(a-b\right)=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)
Từ
\(3\left(a-b\right)=\dfrac{a}{b}\Rightarrow\dfrac{a}{b}=0\Rightarrow a=0\)
\(\Rightarrow a=b=0\) mà \(b\ne0\)
=> Dãy đẳng thức trên không tồn tại