Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(S=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.60}\right)\)
\(S=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(S=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{60}\right)\)
\(S=\frac{3}{2}.\left(\frac{12}{60}-\frac{1}{60}\right)\)
\(S=\frac{3}{2}.\frac{11}{60}\)
\(S=\frac{11}{40}\)
\(\dfrac{6}{5.7}+\dfrac{6}{7.9}+...+\dfrac{6}{59.61}\)
\(=3\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(=\dfrac{3.56}{305}\\ =\dfrac{168}{305}\)
quá dễ :
A=3/3x5+3/5x7+3/7x9+...+3/97x99
A=3/2.(1/3-1/5+1/5-1/3+...+1/97-1/99)
A=3/2.(1/3-1/99)
A=3/2.32/99
A= 16/33
bài này dễ mà
C1 đặt 3 ra rồi nhân 2
C2 làm tắt nhân bằng phân số luôn thế thôi
\(S=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2013.2015}\)
\(S=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\right)\)
\(S=\frac{3}{2}.\left(\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{2013}-\frac{2}{2015}\right)\)
\(S=\frac{3}{2}.\left(\frac{2}{5}-\frac{2}{2015}\right)\)
\(S=\frac{3}{2}.\frac{804}{2015}\)
\(S=\frac{1206}{2015}\)
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)
=> \(\frac{5}{11}y=\frac{2}{3}\)
=>y = \(\frac{2}{3}:\frac{5}{11}\)
=> y = \(\frac{22}{15}\)
cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm
Giải:
\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}\right)y=-\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{11}\right)=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{10}{11}=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{5}{11}=-\dfrac{2}{3y}\)
\(\Leftrightarrow15y=-22\)
\(\Leftrightarrow y=-\dfrac{22}{15}\)
Vậy ...
\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\frac{10}{11}.y=\frac{2}{3}\)
\(\frac{20}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{11}{30}\)
Study well
Đặt \(A=\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{2}{3}.\left(\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}\right)\)
\(\Rightarrow\frac{2}{3}.A=\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{7-5}{5.7}+\frac{9-7}{7.9}+.....+\frac{61-59}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{1}{5}-\frac{1}{61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{56}{305}\)
\(\Rightarrow A=\frac{56}{305}:\frac{2}{3}\)
\(\Rightarrow A=\frac{56}{305}.\frac{3}{2}\)
\(\Rightarrow A=\frac{84}{305}\)
Vậy \(\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}=\frac{84}{305}\)