Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(a,\Rightarrow x=-23+15=-8\\ b,\Rightarrow5\left(x+4\right)=85\\ \Rightarrow x+4=17\Rightarrow x=13\\ c,\Rightarrow5^{x+2}=24+1=25=5^2\\ \Rightarrow x+2=2\Rightarrow x=0\\ d,\Rightarrow x+4+x+5⋮9\\ \Rightarrow2x+9⋮9\\ \Rightarrow2x⋮9\Rightarrow x\in\left\{0;9\right\}\left(0< x< 10\right)\)
Bài 1:
a) \(4^{x+2}+4^x=68\)
\(\Rightarrow4^x\cdot\left(4^2+1\right)=68\)
\(\Rightarrow4^x\cdot17=68\)
\(\Rightarrow4^x=\dfrac{68}{17}\)
\(\Rightarrow4^x=4\)
\(\Rightarrow4^x=4^1\)
\(\Rightarrow x=1\)
b) \(5\cdot2^{x+4}-3\cdot2^x=308\)
\(\Rightarrow2^x\cdot\left(5\cdot2^4-3\right)=308\)
\(\Rightarrow2^x\cdot\left(5\cdot16-3\right)=308\)
\(\Rightarrow2^x\cdot77=308\)
\(\Rightarrow2^x=\dfrac{308}{77}\)
\(\Rightarrow2^x=4\)
\(\Rightarrow2^x=2^2\)
\(\Rightarrow x=2\)
c) \(4\cdot3^{x+1}+7\cdot3^x=513\)
\(\Rightarrow3^x\cdot\left(4\cdot3+7\right)=513\)
\(\Rightarrow3^x\cdot19=513\)
\(\Rightarrow3^x=\dfrac{513}{19}\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
d) \(5^{x+4}-5^x=3120\)
\(\Rightarrow5^x\cdot\left(5^4-1\right)=3120\)
\(\Rightarrow5^x\cdot\left(625-1\right)=3120\)
\(\Rightarrow5^x\cdot624=3120\)
\(\Rightarrow5^x\cdot\dfrac{3120}{624}\)
\(\Rightarrow5^x=5\)
\(\Rightarrow5^x=5^1\)
\(\Rightarrow x=1\)
f) \(3\cdot4^{2x+1}-16^x=2816\)
\(\Rightarrow3\cdot4^{2x+1}-\left(4^2\right)^x=2816\)
\(\Rightarrow3\cdot4^{2x+1}-4^{2x}=2816\)
\(\Rightarrow4^{2x}\cdot\left(3\cdot4-1\right)=2816\)
\(\Rightarrow4^{2x}\cdot11=2816\)
\(\Rightarrow4^{2x}=\dfrac{2816}{11}\)
\(\Rightarrow4^{2x}=256\)
\(\Rightarrow\left(2^2\right)^{2x}=2^8\)
\(\Rightarrow2^{4x}=2^8\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
Bài 2:
\(2^x+124=5^y\)
\(\Rightarrow5^y-2^x=124\)
\(\Rightarrow5^y-2^x=125-1\)
\(\Rightarrow\left\{{}\begin{matrix}5^y=125\\2^x=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^y=5^3\\2^x=2^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\)
Vậy: ....
8x=2111
=>(23)x=2111
=>23x=2111
=>3x=111
=>x=37
2x+5.2x=48
=>2x.6=48
=>2x=8=23
=>x=3
Câu cuối ko làm đc nha
a. 8x = 2111
23x = 2111
3x = 111
x = 111:3
x = 37
b. 2x + 5.2x = 48
2x(5 + 1 )= 48
2x.6 = 48
2x = 48 : 6
2x = 8
2x = 23
x = 3
c. 2x + 3.2x-1 = 40
2x(3:2 +1 ) = 40
2x . \(\frac{5}{2}\) = 40
2x = 40 : \(\frac{5}{2}\)
2x = 16
2x = 24
x = 4
`#040911`
`(x + 5)^3 = (2x)^3`
`\Rightarrow x + 5 = 2x`
`\Rightarrow x + 5 - 2x = 0`
`\Rightarrow 5 + (x - 2x) = 0`
`\Rightarrow 5 - x = 0`
`\Rightarrow x = 5 - 0`
`\Rightarrow x = 5`
Vậy, `x= 5.`
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=\dfrac{86}{2}\\ x=43\)
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=15^{10}:3^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=5^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=86:2\\ x=43\)
[x-2].[x mũ 2 - 16]=0
[x-2]-[x mũ 2 - 16] = 0
TH1: x-2=0
x=0+2
x=2[thỏa mãn]
TH2: x mũ 2 - 16=0
x mũ 2=0+16
x mũ 2= 16
x mũ 2=4 mũ 2 [nghĩa là 16= 4 mũ 2]
x=4
Vậy....
3.2x−4x−1−8=0⇔3.2x−4x4−8=0⇔3.2x−14(2x)2−8=0.3.2x−4x−1−8=0⇔3.2x−4x4−8=0⇔3.2x−14(2x)2−8=0.
Đặt 2x=t(t>0)2x=t(t>0) , khi đó phương trình trở thành 3t−14t2−8=0⇔[t=8(tm)t=4(tm)⇔[2x=82x=4⇔[x1=3x2=2⇒x1+x2=5
Em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé. Đề ko rõ là 2x -1 hay 2x-1