Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
\(\left|x-4\right|;\left|3x+2\right|\ge0\)
\(-2< 0\)
Suy ra không tồn tại giá trị của x.
\(x-4+x-1=5\)
\(2x=5+4+1\)
\(x=5\)
Ta có: 3n+5 chia hết cho 3n-1
=> 3n - 1 + 6 chia hết cho 3n - 1
=> 6 chia hết cho 3n - 1 vì 3n - 1 chia hết cho 3n - 1
=> 3n - 1 \(\in\){ 1 ; 2 ; 3 ; 6 }
=> 3n \(\in\){ 2 ; 3 ; 4 ; 7 }
Mà chỉ có 3 chia hết cho 3 => n=1
a)38-3n chia hết cho n
=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}
b)n+5 chia hết cho n+1
=>n+1+4 chia hết cho n+1
=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}
=>n thuộc{0;1;3}
c)3n+4 chia hết cho n-1
3(n-1)+7chia hết cho n-1
=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}
=> n thuộc{2;8}
d)3n+2 chia hết cho n-1
3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}
=>n thuộc{2;6}
có j ko hiểu hỏi mk
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
a) ( 3n + 2 ) chia hết cho n - 1
Ta có : 3n + 2 = 3n - 1 + 3
Vì 3n - 1 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư( 3 )
Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }
=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }
Vậy n thuộc { 2 ; 0 ; 4 ; -2 }
b ) ( 3n + 24 ) chia hết cho n - 4
Ta có : 3n + 24 = 3n - 4 + 28
Vì 3n - 4 chia hết cho n - 4
=> 28 chia hết cho n - 4
Xong bạn làm tương tự như câu a nha
a, 4n + 3 ⋮ 2n - 1
4n - 2 + 5 ⋮ 2n - 1
2.(2n - 1) + 5 ⋮ 2n - 1
5 ⋮ 2n - 1
2n -1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-2; 0; 1; 3}
b, 3n - 5 ⋮ n + 1
3n + 3 - 8 ⋮ n + 1
3.(n + 1) - 8 ⋮ n + 1
8 ⋮ n + 1
n + 1 \(\in\) Ư(2) = {-8; -4; -2; -1; 1; 2; 4; 8}
n \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}
3n + 5 ⋮ 2n + 1
(3n + 5).2 ⋮ 2n + 1
6n + 10 ⋮ 2n + 1
3.(2n + 1) + 7 ⋮ 2n + 1
2n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 |
3 |
Theo bảng trên ta có
n \(\in\) {-4; -1; 0; 3}
3-1.3n+5.3n-1=162
=>3n-1+5.3n-1=162
=>6.3n-1=162
=>3n-1=27
=>3n-1=33 => n-1=3 => n=4