K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

`(xy-5)(xy+2)+3(xy-2)(xy+2)-(3xy-1/2)^2 +5x^2y^2`

`=(xy+2)(xy-5+3xy-6)-(9x^2y^2-3xy+1/4)+5x^2y^2`

`=(xy+2)(4xy-11)-9x^2y^2+3xy-1/4+5x^2y^2`

`=4x^2y^2-11xy+8xy-22-4x^2y^2+3xy-1/4`

`=-89/4`

Ta có: \(\left(xy-5\right)\left(xy+2\right)+3\left(xy-2\right)\left(xy+2\right)-\left(3xy-\dfrac{1}{2}\right)^2+5x^2y^2\)

\(=x^2y^2-3xy-10+3x^2y^2-12-\left(9x^2y^2-3xy+\dfrac{1}{4}\right)+5x^2y^2\)

\(=9x^2y^2-3xy-22-9x^2y^2+3xy-\dfrac{1}{4}\)

\(=\dfrac{-89}{4}\)

2(X^2-XY)=1(X^2-XY)

lấy đâu ra 1 vậy bạn

17 tháng 11 2016

BẠN ĐỌC HẾT ĐỀ BÀI ĐI LÀ CMT HIỂU

12 tháng 8 2021

đúng

12 tháng 8 2021

đúng

20 tháng 11 2017

bạn có ghi đúng đề không

11 tháng 3 2020

\(a,ĐKXĐ:x\ne-;y\ne0\)

\(P=\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2}{x\left(x+y\right)}+\frac{y^2-x^2}{xy}-\frac{y^2}{y\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x+y\right)}+\frac{\left(x+y\right)\left(y^2-x^2\right)}{xy\left(x+y\right)}-\frac{xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2y+xy^2-x^3+y^3-x^2y-xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}+\frac{x^3-y^3}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy}\cdot\frac{1}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\frac{x-y}{xy}=\frac{2y-x+y}{xy}=\frac{3y-x}{xy}\)

\(b,x^2+y^2+10=2\left(x-3y\right)\)

\(\Leftrightarrow x^2+y^2+10=2x-6y\)

\(\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

thay vào P được : \(P=\frac{3\left(-3\right)-1}{-3\cdot1}=\frac{-10}{-3}=\frac{10}{3}\)

10 tháng 3 2020

a, Rút gọn A

b,Tìm giá trị P, biết x,y thỏa mãn đẳng thức

x^2+y^2+10=2(x-3y)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)

Chọn B.

12 tháng 8 2021

đúng

12 tháng 8 2021

Đúng