Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần ghi đầy đủ điều kiện của x,y đề mọi người hỗ trợ tốt hơn.
2\(xy\) + \(x\) - 4\(y\) = 8 ⇔ (2\(xy\) - 4\(y\)) + \(x\) = 8 ⇔ 2\(y\)(\(x\) - 2) = 8 - \(x\)
\(y\) = (8 - \(x\)) : { 2(\(x-2\))} ⇔ \(y\) = \(\dfrac{8-x}{2\left(x-2\right)}\) (đk \(x\) \(\ne\) 2)
\(y\) \(\in\) Z ⇔ 8 - \(x\) \(⋮\) 2 (\(x-2\)) ⇔ 2 \(\times\)(8-\(x\)) ⋮ 2(\(x-2\)) ⇔ 16 - 2\(x\) ⋮ 2\(x\) - 4
⇔ -( 2\(x\) - 4) + 12 ⋮ 2\(x\) - 4 ⇔ 12 ⋮ 2\(x\) - 4
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
2\(x-4\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(x\) | -4 | -1 | 0 | \(\dfrac{1}{2}\) | 1 | \(\dfrac{3}{2}\) | \(\dfrac{5}{2}\) | 3 | \(\dfrac{7}{2}\) | 4 | 5 | 8 |
⇒ \(x\) \(\in\) { -4; -1; 0; 1; 3; 4; 5; 8}
Thay \(x\) \(\in\) { - 4; -1; 0; 1; 3; 4; 5; 8} vào biểu thức \(y\) = \(\dfrac{8-x}{2x-4}\)
Ta có \(y\) \(\in\) { -1; -\(\dfrac{3}{2}\); -2; - \(\dfrac{7}{2}\); \(\dfrac{5}{2}\); 1; \(\dfrac{1}{2}\); 0}
Vậy các cặp (\(x\); y) thỏa mãn đề bài lần lượt là:
(\(x\); y) = (-4; -1); (0; -2); ( 4; 1); (8; 0)
\(2xy+x-4y=8\)
\(x\left(2y+1\right)-4y=8\)
\(x\left(2y+1\right)-4y-2=8-2\)
\(x\left(2y+1\right)-2\left(2y+1\right)=6\)
\(\left(2y+1\right)\left(x-2\right)=6\)
\(\Rightarrow2y+1\) và \(x-2\) là ước của 6
mà 2y + 1 la số lẻ nên \(2y+1\in\left(6\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
2y+1 |
1 |
3 |
-1 |
-3 |
x-2 |
6 |
2 |
-6 |
-2 |
y |
0 |
1 |
-1 |
-2 |
x |
8 |
4 |
-4 |
0 |
Vậy ta có 4 cặp số (x,y) thoả mãn đề bài là (8,0);(4,1);(-4,-1);(0,-2)
Chúc bạn học tốt
a) x + y +xy = 6
y( 1 + x ) + x + 1 = 7
( x + 1 ) ( y + 1 ) = 7
x+1 | -7 | -1 | 1 | 7 |
y+1 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -2 | -8 | 6 | 0 |
b) 2x + y - 2xy - 8 = 0
2x ( 1 - y ) - ( 1 - y ) - 7 = 0
( 1 - y ) ( 2x - 1 ) = 7
2x - 1 | -7 | -1 | 1 | 7 |
1 - y | -1 | -7 | 7 | 1 |
x | -3 | 0 | 1 | 4 |
y | 2 | 8 | -6 | 0 |
c) x - 4y + xy - 1 = 0
x( 1 + y ) -4( 1 + y ) + 3 = 0
( 1 + y ) ( x- 4 ) = 3
x- 4 | -3 | -1 | 1 | 3 |
1 + y | -1 | -3 | 3 | 1 |
x | 1 | 3 | 5 | 7 |
y | -2 | -4 | 2 | 0 |
Ta có: 2xy -x + 4y =11
2yx - x+4y =11
(2y-1) x x + 2y +2y -1-1=11-1-1
(2y-1) x x +2y-1 + 2y -1=9
( 2y-1) x ( x+2) =9
có bảng
2y-1 1 9 -1 -9 -3 3
y 1 5 0 -4 -1 2
x+2 9 1 -9 -1 -3 3
x 7 -1 -11 -3 -5 1
Nx chọn chọn chọn ch ọn chọn chọn
KL:
ttik ủng hộ nhak
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
<=> 2xy-x=4y+4
<=> x(2y-1) = 4y+4 => \(x=\frac{4y+4}{2y-1}=\frac{4y-2+6}{2y-1}=\frac{2\left(2y-1\right)}{2y-1}+\frac{6}{2y-1}\)=> \(x=2+\frac{6}{2y-1}\)
Để x nguyên => 6 chia hết cho 2y-1 => 2y-1=(-6,-3,-2,-1,1,2,3,6) => y=(-5/2; -1; -1/2; 0; 1; 3/2; 2; 7/2)
Do y nguyên nên ta chọn được y=(-1, 0, 1, 2) => x=(0, -4, 8, 4)
Các cặp (x,y) thỏa mãn là: (0; -1), (-4,0); (8,1); (4,2)
Ta có : 2xy + x - 4y = 7
=> 2(2xy + x - 4y) = 7.2
=> 4xy + 2x - 8y = 14
=> (4xy - 8y) + 2x - 4 = 14 - 4
=> 4y(x - 2) + 2(x - 2) = 10
=> ( 4y + 2)(x - 2) = 10
=> 4y + 2;x - 2 ∈ Ư(10) ∈ {-10;-5;-2;-1;1;2;5;10}
Mà 4y + 2 luôn chẵn => Ta có bảng sau :
4y + 2 | -10 | 10 | 2 | -2 |
x - 2 | -1 | 1 | 5 | -5 |
y | -3 | 2 | 0 | -1 |
x | 1 | 3 | 7 | -3 |
2xy+4y=x+8
2y(x+4)=(x+4)+4
2y(x+4)-(x+4)=4
(x+4)(2y-1)=4 .Sau đó tìm U(4)
Tiếp bạn từ kẻ bảng làm