K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

https://www.youtube.com/watch?v=fvGaHwKrbUc

28 tháng 6 2021

Đặt `A=2x^2+2xy+5y^2-8x-22y`

`<=>2A=4x^2+4xy+10y^2-16x-44y`

`<=>2A=4x^2+4xy+y^2-8(2x+y)+9y^2-28y`

`<=>2A=(2x+y)^2-8(2x+y)+16+9y^2-28y+196/9-196/9`

`<=>2A=(2x+y-4)^2+(3y-14/3)^2-196/9>=-196/9`

`<=>A>=-98/9`

Dấu "=" xảy ra khi `y=14/9,x=(4-y)/2=11/9`

30 tháng 6 2021

m ra gtnn là -26

 

9 tháng 12 2016

Tử \(x^4+2x^3+8x+16\)

\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)

\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)

Mẫu \(x^4-2x^3+8x^2-8x+16\)

\(=x^4-2x^3+4x^2+4x^2-8x+16\)

\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)

Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)

Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy Min=0 khi x=-2

 

4 tháng 11 2018

a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra <=> x-2=0 <=> x=2

Vậy MinA = -18 khi x=2

b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2

Vậy MaxB = 1/4 khi x=1/2

5 tháng 11 2018

a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)

\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)

Vì \(2\left(x-2\right)^2\ge0\forall x\)

Nên \(2\left(x-2\right)^2\ge-18\)

Hay \(A\ge-18\)

Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)

\(x-2=0\)

\(x=2\)

b) \(B=x-x^2\)

\(=-x^2-x\)

\(=-\left(x^2-x\right)\)

\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)

\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x \)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

NV
26 tháng 12 2022

\(S=\dfrac{3x^2+8x+6}{x^2+2x+1}=\dfrac{-2\left(x^2+2x+1\right)+x^2+4x+4}{x^2+2x+1}=-2+\left(\dfrac{x+2}{x+1}\right)^2\ge-2\)

\(S_{min}=-2\) khi \(x=-2\)

26 tháng 12 2022

sao lại ra -2 thé thầy ??

a) Ta có: \(A=x^2-5x+7\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

b) Ta có: \(B=2x^2-8x+15\)

\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu '=' xảy ra khi x=2

19 tháng 7 2021

a. `A=x^2-5x+7`

`=x^2-2.x. 5/2 + (5/2)^2 +3/4`

`=(x-5/2)^2 + 3/4`

`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`

b) `B=2x^2-8x+15`

`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`

`=(\sqrt2x-2\sqrt2)^2+7`

`=> B_(min)=7 <=> x=2`.