Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình hiển thị bị lỗi rồi. Bạn nên gõ hẳn đề ra để được hỗ trợ tốt hơn nhé.
d) \(\left|2x-3\right|=x-3\)
TH1: \(\left|2x-3\right|=2x-3\) với \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
Pt trở thành:
\(2x-3=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\left(ktm\right)\)
TH2: \(\left|2x-3\right|=-\left(2x-3\right)\) với \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
Pt trở thành:
\(-\left(2x-3\right)=x-3\)
\(\Leftrightarrow-2x+3=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{-3}=2\left(ktm\right)\)
Vậy Pt vô nghiệm
7: Ta có: \(\left(3x+4\right)\left(2x-1\right)+6x\left(1-x\right)=0\)
\(\Leftrightarrow6x^2-3x+8x-4+6x-6x^2=0\)
\(\Leftrightarrow11x=4\)
hay \(x=\dfrac{4}{11}\)
8: Ta có: \(2x\left(x^2-1\right)+x\left(-2x^2-3x+1\right)=-x-27\)
\(\Leftrightarrow2x^3-2x-2x^3-3x^2+x+x+27=0\)
\(\Leftrightarrow x^2=9\)
hay \(x\in\left\{3;-3\right\}\)
1: \(\left(x-3\right)\left(2x-5\right)-3x\left(x+4\right)\)
\(=2x^2-5x-6x+15-3x^2-12x\)
\(=-x^2-23x+15\)
2: \(\left(\dfrac{1}{2}x+5\right)\left(2x-\dfrac{1}{5}\right)\)
\(=x^2-\dfrac{1}{10}x+10x-1\)
\(=x^2+\dfrac{99}{10}x-1\)
\(\left(x+1\right)\left(2x-2\right)-3>-5x-\left(2x+1\right)\left(3x-x\right)\)
\(\Leftrightarrow2x^2-2x+2x-2-3>-5x-\left(6x^2-2x^2+3x-x\right)\)
\(\Leftrightarrow2x^2-2x+2x-5>-5x-6x^2+2x^2-3x+x\)
\(\Leftrightarrow2x^2-5+5x+6x^2-2x^2+3x-x>0\)
\(\Leftrightarrow6x^2-2x>5\)
\(\Leftrightarrow2x\left(3x-1\right)>5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x>5\\3x-1>5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{5}{2}\\x>2\end{matrix}\right.\)
\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)
\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
\(\dfrac{2x+1}{3}-\dfrac{x-1}{2}< 3\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)-3\left(x-1\right)}{6}< \dfrac{18}{6}\)
\(\Leftrightarrow2\left(2x+1\right)-3\left(x-1\right)< 18\)
\(\Leftrightarrow4x+2-3x+3< 18\)
\(\Leftrightarrow x< 13\)
Vậy \(S=\left\{x|x< 13\right\}\)