Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)
\(=-3x\left(x^2+4x+4\right)+\left(x+3\right)\left(x^2-1\right)-\left(4x^2-12x+9\right)\)
\(=-3x^3-12x^2-12x+x^3-x+3x^2-3-4x^2+12x-9\)
\(=-2x^3-13x^2-x-12\)
f(x)=ax-b
=> f(2)=2a-b=8(thay x=2)
f(-2)=-2a-b=0(Thay x=-2)
Cộng vế với vế => 2a-b-2a-b=8
=> -2b=8
=>b=-4
=> a=2
a) \(\frac{2x-3}{4-x}=\frac{4-x}{2x-3}\)
\(\left(2x-3\right)\left(2x-3\right)=\left(4-x\right)\left(4-x\right)\)
\(\left(2x-3\right)^2=\left(4-x\right)^2\)
\(4x^2-12x+9=16-8x+x^2\)
\(4x^2-12x+9-16+8x-x^2=0\)
\(3x^2-4x-7=0\)
\(3x^2+3x-7x-7=0\)
\(3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(3x-7\right)=0\)
\(\hept{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
\(2x.\left(x-\frac{1}{7}\right)=0\)
Ta có :
\(\hept{\begin{cases}x-\frac{1}{7}=0\\x-\frac{1}{7}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}}\)
Vậy \(x=0;x=\frac{1}{7}\)
\(2x.\left(x-\frac{1}{7}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-\frac{1}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}\)