Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bữa nay thi vong trường mình đã làm bài đó rồi bằng-7 chắc 100 phầm trăm
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
a)A=(3x^2+1)(x+1)>/0.vậy minA=0 khi và chỉ khi x=-1/3 và x=-1
b)B=(3x-2)(x-4)
\(A=-\left(x^2-2x+1\right)-2\)
\(A=-\left(x-1\right)^2-2\)
Vì \(-\left(x-1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-2\le0-2;\forall x\)
Hay \(A\le-2;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MAX A=-2 \(\Leftrightarrow x=1\)
\(C=-2x^2+2xy-y^2+2x+4\)
\(C=-x^2+2xy-y^2-x^2+2x-1+5\)
\(C=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)+5\)
\(C=-\left(x-y\right)^2-\left(x-1\right)^2+5\le5\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy C max = 5 tại x = y = 1
\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)
\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)
\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x+y\right).0+1\)
\(M=1\)
Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
a) \(\frac{2x-3}{4-x}=\frac{4-x}{2x-3}\)
\(\left(2x-3\right)\left(2x-3\right)=\left(4-x\right)\left(4-x\right)\)
\(\left(2x-3\right)^2=\left(4-x\right)^2\)
\(4x^2-12x+9=16-8x+x^2\)
\(4x^2-12x+9-16+8x-x^2=0\)
\(3x^2-4x-7=0\)
\(3x^2+3x-7x-7=0\)
\(3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(3x-7\right)=0\)
\(\hept{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)