Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
Đat 2x/3=3y/4=4z/5=k(k khác 0). Ta co x=3/2.k ; y=4/3k ; z =5/4k. => x+y+z=3/2k+4/3k+5/4k=k.(49/12)=49. =>k=12 =>x=18;y=16 ;z=15
a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k
=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3
=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9
=> 6k = 9 - 2 = 7
=> k = 7 : 6 = 7/6
2x =5k
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Lời giải:
$2x=3y\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{6}=\frac{y}{4}$
$5y=4z\Leftrightarrow \frac{y}{4}=\frac{z}{5}$
Vậy:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
$\Rightarrow (\frac{x}{6})^3=(\frac{y}{4})^3=(\frac{z}{5})^3=\frac{xyz}{6.4.5}=\frac{120}{120}=1$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}=1$
$\Rightarrow x=6; y=4; z=5$
a, \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\&2x-3y+z=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{y}{12}\\\dfrac{y}{12}=\dfrac{z}{20}\end{matrix}\right.\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\&2x-3y+z=6\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
Vậy, ...
b, \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{7}\&2x+3y-z=186\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\&2x+3y-z=186\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=3\\\dfrac{y}{20}=3\\\dfrac{z}{28}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Vậy, ...
c, Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k.3k.5k=1920\Rightarrow30k^3=1920\)
\(\Rightarrow k^3=64\Rightarrow k=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.4=8\\y=3.4=12\\z=5.4=20\end{matrix}\right.\)
Vậy,...
a) x/3 = y/4 ; y/4 = z/5 và 2x - 3y + z = 6
<=> x/3 = y/4 <=> x/12 = y/16 (1)
<=> y/4 = z/5 <=> y/16 = z/20 (2)
Từ (1) và (2) suy ra : x/12 = y/16 = z/20
<=> 2x/24 = 3y/48 = z/20
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
2x/24 = 3y/48 = z/20 = 2x - 3y + z / 24 - 48 + 20 = -6/4 = -3/2
<=> x/3 = -3/2 => x = -9/2
<=> y/4 = -3/2 => y = -6
<=> z/5 = -3/2 => z = -15/2
Vậy x = -9/2 , b = -6 , z = -15/2 .