K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x=3y

=>\(\dfrac{x}{3}=\dfrac{y}{2}\)

=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(1\right)\)

5y=7z

=>\(\dfrac{y}{7}=\dfrac{z}{5}\)

=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Đặt \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=k\)

=>x=21k; y=14k; z=10k

3x-2y+5z=-30

=>\(3\cdot21k-2\cdot14k+5\cdot10k=-30\)

=>85k=-30

=>\(k=-\dfrac{30}{85}=-\dfrac{6}{17}\)

=>\(x=21\cdot\dfrac{-6}{17}=\dfrac{-126}{17};y=14\cdot\dfrac{-6}{17}=-\dfrac{84}{17};z=10\cdot\dfrac{-6}{17}=-\dfrac{60}{17}\)

NV
7 tháng 3

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{2y}{28}=\dfrac{5z}{50}=\dfrac{3x-2y+5z}{63-28+50}=\dfrac{-30}{85}\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{30}{85}.21=-\dfrac{126}{17}\\y=-\dfrac{30}{85}.14=-\dfrac{84}{17}\\z=-\dfrac{30}{85}.10=-\dfrac{60}{17}\end{matrix}\right.\)

Em có ghi nhầm đề đâu ko mà kết quả xấu quá

28 tháng 12 2018

a) \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(3x-7y+5z=30\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\\\dfrac{y}{14}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\).

b) Cách làm giống y hệt câu a nhé! Không khác đâu vì \(3x-7y+5z=3x+5z-7y\), nó chỉ đổi đổi vị trí các số hạng thoy.

3 tháng 7 2017

Từ \(2x=3y;5y=7z\Rightarrow x=\frac{3}{2}y;z=\frac{5y}{7}\)

Mà \(3x-7y+5z=-30\Rightarrow3\frac{3y}{2}-7.y+5.\frac{5y}{7}=-30\)

\(\frac{\Rightarrow9y}{2}-7y+\frac{25y}{7}=-30\Rightarrow\frac{63y-98y+50y}{14}=-30\)

\(\Rightarrow15y=-120\Rightarrow y=-28\)

\(\Rightarrow x=\frac{3}{2}.\left(-28\right)=-42;z=\frac{5}{7}.\left(-28\right)=-20\)

Vậy \(x=-42;y=-28;z=-20\)

12 tháng 7 2018

Theo bài ra ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\)

Lại có : \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)

\(\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)\(3x-7y+5z=-30\)

Áp dụng tính chất dáy tỉ số bằng nhau ta có :

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{-30}{15}=-2\)

\(\dfrac{3x}{63}=-2\Rightarrow3x=-126\Rightarrow x=-42\)

\(\dfrac{7y}{98}=-2\Rightarrow7y=-196\Rightarrow y=-28\)

\(\dfrac{5z}{50}=-2\Rightarrow5z=-100\Rightarrow z=-20\)

Vậy \(x,y,z\) lần lượt là \(\left(-42\right),\left(-28\right)\)\(\left(-20\right)\)

27 tháng 7 2016

2x=3y => \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

                                                                              \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

5y=7z => \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) 

áp dụng tính chất của dãy tỉ số bằng nhau(còn lại tự tính)

27 tháng 7 2016

kích nha Phạm Quang Huy

 

1 tháng 11 2021

Bạn tham khảo :

Biết :

2x=3y

⇒ 23=yx

⇒ x3=y2 ⇒ x21=y14 (1) 

5y=7z

⇒ 57=zy
⇒ y7=z5 ⇒ y14=z10  (2)

Từ (1) và (2) ⇒ x21=y14=z10 

⇒ 3x63=7y98=5z50

Áp dụng tính chất dãy tỉ bằng nhau được :

3x63=7y98=5z50=3x−7y+5z63−98+50=3015=2 

⇒ 3x63=x21=2⇒x=42

7y98=y14=2⇒y=28

5z50=z10=2⇒z=20

Vậy x=42 ; y=28 ; z=20 

1 tháng 11 2021

y=7/5 z

x=3/2 y=21/10 z

3x - 7y + 5z =30

<=> 63/10 z - 49/5 z + 5z = 30

<=>                 5z - 35/10 z = 30

<=>                        15/10 z = 30

<=>                                   z = 30 : 15/10

<=>                                    z = 20

=> y = 28

=> x = 42

22 tháng 4 2021

2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42

7 tháng 10 2021

Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )

Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)

Thay vào \(3x+5z-7y=30\)ta có ;

\(3.21k+5.10k-7.14k=30\)

\(63k+50k-98k=30\)

\(15k=30\)

\(k=2\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

15 tháng 7 2017

Theo bài ra ta có :

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{3}=\dfrac{7y}{14}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{2y}{14}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x+5z-7y}{63+50-98}=\dfrac{30}{15}=2\\ \)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=2\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\\\dfrac{7y}{98}=2\Rightarrow\dfrac{y}{14}=2\Rightarrow y=28\\\dfrac{5z}{50}=2\Rightarrow\dfrac{z}{10}=2\Rightarrow z=20\end{matrix}\right.\\ \)

\(\text{Vậy }x=42\\ y=28\\ z=20\)

15 tháng 7 2017

Ta có:

\(2x=3y\Rightarrow10x=15y\)

\(5y=7z\Rightarrow15y=21z\)

\(\Rightarrow10x=15y=21z\Rightarrow\dfrac{10x}{210}=\dfrac{15y}{210}=\dfrac{21z}{210}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x+5z-7y}{3.21+5.14-7.10}\)

\(=\dfrac{30}{63+70-70}=\dfrac{30}{63}=\dfrac{10}{21}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10}{21}.21=10\\y=\dfrac{10}{21}.14=\dfrac{20}{3}\\z=\dfrac{10}{21}.10=\dfrac{100}{21}\end{matrix}\right.\)

Chúc bạn học tốt!!!