Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk lm k chắc đúng, sai đâu ib mk nhé
DKXD: \(x\ge-\frac{1}{2};\)\(x\ne0\)
Dat: \(\sqrt{2x+1}=a\) \(\left(a\ge0;a\ne1\right)\)
Khi đó bpt đã cho trở thành:
\(\frac{a^2-1}{a-1}>a^2+1\)
<=> \(a+1>a^2+1\)
<=> \(a\left(1-a\right)>0\)
<=> \(1-a>0\)
<=> \(a< 1\)
Khi đó: \(\sqrt{2x+1}< 1\)
<=> \(2x+1< 1\)
<=> \(x< 0\)
Vay: \(-\frac{1}{2}\le x< 0\)
\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)
\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)
\(\Leftrightarrow4x-2< 3x+18\)
\(\Leftrightarrow4x-3x< 2+18\)
\(\Leftrightarrow x< 20\)
\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)
\(\Leftrightarrow5x-11>4x+4\)
\(\Leftrightarrow5x-4x>11+4\)
\(\Leftrightarrow x>15\)
\(7\left(2x-4\right)>1-4x\)
\(\Leftrightarrow14x-28-1+4x>0\)
\(\Leftrightarrow x>\dfrac{29}{18}\)
\(\dfrac{2x}{5}+\dfrac{3-2x}{3}\ge\dfrac{3x+2}{2}\)
\(\Leftrightarrow12x+10\left(3-2x\right)\ge15\left(3x+2\right)\)
\(\Leftrightarrow12x+30-20x-45x-30\ge0\)
\(\Leftrightarrow-53x\ge0\Leftrightarrow x\le0\)
a.
\(\sqrt{x+4\sqrt{x}+4=5x+2}\)
\(\Rightarrow\sqrt{\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2}=5x+2\)
\(\Rightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\sqrt{x}+2=5x+2\)
\(\Rightarrow\sqrt{x}=5x\)
\(\Rightarrow x=25x^2\)
\(\Rightarrow x=0\)
Vậy nghiệm của phương trình là x = 0
b)
\(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{\left(\sqrt{x}-2\right)^2=10}\)
\(\Rightarrow\sqrt{x}-1-\sqrt{x}+2=10\)
\(\Rightarrow1=10\) (Vô lí)
Vậy phương trình đã cho vô nghiệm
Đk: \(x\ge-1\)
pt<=> \(3\left(x^2+2x+2\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}\)
\(3\left(x^2+2x+2\right)=10\sqrt{\left(x+1\right)\left(x^2-x+2x+1\right)}\)
<=> \(3\left(x^2+2x+1\right)=10\sqrt{\left(x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x+1}=a\left(a\ge0\right)\),\(\sqrt{x^2+x+1}=b\)
=> \(a^2+b^2=x+1+x^2+x+1=x^2+2x+2\)
Có \(3\left(a^2+b^2\right)=10ab\)
<=>\(3a^2-10ab+3b^2=0\)
<=> \(3a^2-ab-9ab+3b^2=0\)
<=> \(a\left(3a-b\right)-3b\left(3a-b\right)=0\)
<=> \(\left(a-3b\right)\left(3a-b\right)=0\) <=> \(\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}\sqrt{x+1}=3\sqrt{x^2+x+1}\\3\sqrt{x+1}=\sqrt{x^2+x+1}\end{matrix}\right.\)
Giải nốt :))
\(9,\Leftrightarrow x+1=8\Leftrightarrow x=7\\ 10,\Leftrightarrow3-2x=-8\Leftrightarrow-2x=-11\Leftrightarrow x=\dfrac{11}{2}\)
9. \(\sqrt[3]{x+1}=2\left(ĐK:x\ge-1\right)\)
<=> x + 1 = 23
<=> x + 1 = 8
<=> x = 7 (TM)
10. \(\sqrt[3]{3-2x}=-2\left(ĐK:x\le\dfrac{3}{2}\right)\)
<=> 3 - 2x = (-2)3
<=> 3 - 2x = -8
<=> -2x = -11
<=> \(x=\dfrac{11}{2}\left(loại\right)\)
Vậy nghiệm của PT là \(S=\varnothing\)