K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2018

mk lm k chắc đúng, sai đâu ib mk nhé

DKXD:  \(x\ge-\frac{1}{2};\)\(x\ne0\)

Dat:   \(\sqrt{2x+1}=a\)  \(\left(a\ge0;a\ne1\right)\)

Khi đó bpt đã cho trở thành:

\(\frac{a^2-1}{a-1}>a^2+1\)

<=>  \(a+1>a^2+1\)

<=>  \(a\left(1-a\right)>0\)

<=>  \(1-a>0\)

<=>  \(a< 1\)

Khi đó:  \(\sqrt{2x+1}< 1\)   

<=>  \(2x+1< 1\)

<=>   \(x< 0\)

Vay:    \(-\frac{1}{2}\le x< 0\)

24 tháng 9 2018

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\sqrt{\frac{x^2+2x\sqrt{1-x^2}+1-x^2}{2}}=1-2x^2\)

\(\Leftrightarrow\sqrt{\frac{\left(x+\sqrt{1-x^2}\right)^2}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{x+\sqrt{1-x^2}}{\sqrt{2}}=1-2x^2\)

Làm nôt

5 tháng 6 2018

a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)

\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)

\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)

Làm nốt

5 tháng 6 2018

b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Làm nốt

18 tháng 9 2021

\(\sqrt{2x^2-2x+1}=2x-1\)

\(\Leftrightarrow2x^2-2x+1=4x^2-4x+1\)

\(\Leftrightarrow2x^2-2x=0\)

\(\Leftrightarrow2x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

Vậy S=\(\left\{0,1\right\}\)

ĐKXĐ:

\(\left\{{}\begin{matrix}2x^2-2x+1\ge0\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+x^2\ge0\forall x\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

Đề bài

\(\Rightarrow2x^2-2x+1=\left(2x-1\right)^2=4x^2-4x+1\)

\(\Leftrightarrow2x^2-2x=0\)

\(\Leftrightarrow2x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{1\right\}\)

24 tháng 7 2017

\(\sqrt{x+2}=\frac{x^2+2x+2}{2x+1}\)

\(pt\Leftrightarrow\sqrt{x+2}-2=\frac{x^2+2x+2}{2x+1}-2\)

\(\Leftrightarrow\frac{x+2-4}{\sqrt{x+2}+2}=\frac{x^2-2x}{2x+1}\)

\(\Leftrightarrow\frac{x-2}{\sqrt{x+2}+2}-\frac{x\left(x-2\right)}{2x+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{\sqrt{x+2}+2}-\frac{x}{2x+1}\right)=0\)

Suy ra x=2 và \(\frac{1}{\sqrt{x+2}+2}=\frac{x}{2x+1}\) *nhân chéo, bình phương rút gọn*

\(\Rightarrow x=2;x=\frac{\sqrt{5}-1}{2}\)