Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x-1}=x^3-2x^2+2x\left(ĐK:x\ge\frac{1}{2}\right)\) \(\left(1\right)\)
\(\Leftrightarrow\sqrt{2x-1}=x^3-x\left(2x-1\right)+x\)
Đặt: \(\sqrt{2x-1}=a\left(a\ge0\right)\)
Khi đó pt (1) trở thành:
\(a=x^3-a^2x+x\)
\(\Leftrightarrow\left(x^3-a^2x\right)+\left(x-a\right)=0\)
\(\Leftrightarrow x\left(x-a\right)\left(x+a\right)+\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-a=0\left(2\right)\\x^2+ax+1=0\left(3\right)\end{array}\right.\)
Giải (2): \(x-a=0\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt{2x-1}\)
\(\Leftrightarrow x^2=2x-1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\left(tm\right)\)
Giải (3) \(x^2+ax+1=0\)
Vì: \(VT\left(3\right)>0\) ( Vì: \(x\ge\frac{1}{2};a\ge0\) )
\(VP\left(3\right)=0\)
=> pt(3) vô nghiệm
Vậy pt trình đã cho có tập nghiêm là \(S=\left\{1\right\}\)
BÀi này bn còn có thế lm bằng pp đưa chúng về tổng các bình phương bằng 0
\(x^2-2x+3=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)
\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)
\(\Leftrightarrow-5t^2+11t-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
ĐKXĐ: x>=0; x<>1
PT =>\(\dfrac{\left(\sqrt{x}+3\right)\left(-2x+6\right)}{\left(\sqrt{x}-1\right)^2}=0\)
=>6-2x=0
=>x=3
\(\sqrt{25t^2-9}=2\sqrt{5t-3}\left(t\ge\dfrac{3}{5}\right)\)hoặc\(t\le-\dfrac{3}{5}\))
\(=\sqrt{\left(5t-3\right)\left(5t+3\right)}-2\sqrt{5t-3}=0\)
\(< =>\sqrt{5t-3}\left(\sqrt{5t+3}-2\right)=0\)
\(=>\left[{}\begin{matrix}\sqrt{5t-3}=0\\\sqrt{5t+3}-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=0,6\left(TM\right)\\t=0,2\left(loai\right)\end{matrix}\right.\)
vậy t=0,6
\(\sqrt{-2x^2+6}=x-1\)(\(-\sqrt{3}\le x\le\sqrt{3}\) \(\))
\(=>-2x^2+6=x^2-2x+1\)
\(< =>-3x^2+2x+5=0\)
\(\Delta=\left(2\right)^2-4.5.\left(-3\right)=64>0\)
\(=>\left[{}\begin{matrix}x1=\dfrac{-2+\sqrt{64}}{2\left(-3\right)}=-1\left(loai\right)\\x2=\dfrac{-2-\sqrt{64}}{2\left(-3\right)}=\dfrac{5}{3}\left(TM\right)\end{matrix}\right.\)vậy x=5/3
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1+2-x\right)=0\)
=>\(\left(2x-1\right)\left(1-x\right)=0\)
=>\(\left[{}\begin{matrix}2x-1=0\\1-x=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)