K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

\(\sqrt{25t^2-9}=2\sqrt{5t-3}\left(t\ge\dfrac{3}{5}\right)\)hoặc\(t\le-\dfrac{3}{5}\))

\(=\sqrt{\left(5t-3\right)\left(5t+3\right)}-2\sqrt{5t-3}=0\)

\(< =>\sqrt{5t-3}\left(\sqrt{5t+3}-2\right)=0\)

\(=>\left[{}\begin{matrix}\sqrt{5t-3}=0\\\sqrt{5t+3}-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=0,6\left(TM\right)\\t=0,2\left(loai\right)\end{matrix}\right.\)

vậy t=0,6

\(\sqrt{-2x^2+6}=x-1\)(\(-\sqrt{3}\le x\le\sqrt{3}\) \(\))

\(=>-2x^2+6=x^2-2x+1\)

\(< =>-3x^2+2x+5=0\)

\(\Delta=\left(2\right)^2-4.5.\left(-3\right)=64>0\)

\(=>\left[{}\begin{matrix}x1=\dfrac{-2+\sqrt{64}}{2\left(-3\right)}=-1\left(loai\right)\\x2=\dfrac{-2-\sqrt{64}}{2\left(-3\right)}=\dfrac{5}{3}\left(TM\right)\end{matrix}\right.\)vậy x=5/3

 

20 tháng 7 2017

Cau 1. X=2

Cau 2 x= 23

Cau/3.x=14

ban co the nao giai chi tiet cho minh dc ko

20 tháng 9 2021

1) \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)

2) \(\dfrac{3}{5}\sqrt{25x-50}-\sqrt{x-2}=6\left(đk:x\ge2\right)\)

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=6\)

\(\Leftrightarrow2\sqrt{x-2}=6\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)

17 tháng 9 2019

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)(ĐK: \(\sqrt{2x-5}\ge0\Leftrightarrow x\ge\frac{5}{2}\)

\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)+2\sqrt{2x-5}.3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)(vì \(\sqrt{2x-5}\ge0\) nên \(\sqrt{2x-5}+3\ge3>0\))

-TH: \(\sqrt{2x-5}-1\ge0\Leftrightarrow\sqrt{2x-5}\ge1\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\Leftrightarrow2\sqrt{2x-5}=2\)

\(\Leftrightarrow\sqrt{2x-5}=1\)

\(\Leftrightarrow2x-5=1\)

\(\Leftrightarrow x=3\left(chọn\right)\)

-TH: \(\sqrt{2x-5}-1< 0\Leftrightarrow x< 3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)

\(\Leftrightarrow4=4\)(luôn đúng với mọi \(\frac{5}{2}\le x< 3\))

Vậy nghiệm của phương trình là \(\frac{5}{2}\le x\le3\)

17 tháng 9 2019

2,7612

27 tháng 6 2023

\(a,\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\left(dkxd:a\ne9,a\ge0\right)\)

\(=\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-3\left(\sqrt{a}-3\right)-a+2}{a-9}\)

\(=\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{a-9}\)

\(=\dfrac{11}{a-9}\)

\(b,\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

27 tháng 6 2023

bạn ơi có phải \(x\sqrt{x}\) là \(\left(\sqrt{x}\right)^3\) đúng ko ạ

15 tháng 8 2023

\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)

\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)

Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)

a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)

=>x+6<0

=>x<-6

b: ĐKXĐ: (-2)/(6-x)>=0

=>6-x<0

=>x>6

c: ĐKXĐ: (-x+3)/(-6)>=0

=>-x+3<=0

=>-x<=-3

=>x>=3

d: ĐKXĐ: (7x-1)/-9>=0

=>7x-1<=0

=>x<=1/7

e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0

=>x+2>=0

=>x>=-1

f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0

=>x-2>=0

=>x>=2

a) ĐK: \(x\ge3\)

PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)

     \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)

     \(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)

     \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)

  Vậy ...

      

17 tháng 6 2021

cảm ơn bạn