K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)(ĐK: \(\sqrt{2x-5}\ge0\Leftrightarrow x\ge\frac{5}{2}\)

\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)+2\sqrt{2x-5}.3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)(vì \(\sqrt{2x-5}\ge0\) nên \(\sqrt{2x-5}+3\ge3>0\))

-TH: \(\sqrt{2x-5}-1\ge0\Leftrightarrow\sqrt{2x-5}\ge1\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\Leftrightarrow2\sqrt{2x-5}=2\)

\(\Leftrightarrow\sqrt{2x-5}=1\)

\(\Leftrightarrow2x-5=1\)

\(\Leftrightarrow x=3\left(chọn\right)\)

-TH: \(\sqrt{2x-5}-1< 0\Leftrightarrow x< 3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)

\(\Leftrightarrow4=4\)(luôn đúng với mọi \(\frac{5}{2}\le x< 3\))

Vậy nghiệm của phương trình là \(\frac{5}{2}\le x\le3\)

17 tháng 9 2019

2,7612

NV
15 tháng 10 2019

ĐKXĐ: \(-2\le x\le2\)

Đặt \(\sqrt{2-x}+\sqrt{2+x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)

Phương trình trở thành:

\(a+\frac{a^2-4}{2}=2\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2-x}+\sqrt{2+x}=2\)

\(\sqrt{2-x}+\sqrt{2+x}\ge\sqrt{2-x+2+x}=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left[{}\begin{matrix}2-x=0\\2+x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

NV
20 tháng 1

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)

\(\Leftrightarrow2\sqrt{2x-5}=10\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow2x-5=25\)

\(\Leftrightarrow x=15\)

14 tháng 9 2016

Ta có PT <=> \(\sqrt{x^2+2x+5}-\left(x+\frac{5}{3}\right)\) + \(\sqrt{x^2-6x+10}-x\)\(5-2x-\frac{5}{3}\)

<=> \(\frac{\frac{20}{9}-\frac{4x}{3}}{\sqrt{x^2+2x+5}+\left(x+\frac{5}{3}\right)}\)\(\frac{10-6x}{\sqrt{x^2-6x+10}+x}\)\(\frac{10}{3}-2x\)

Tới đây là có nhân tử chung là x - \(\frac{5}{3}\)

Bạn làm phần còn lại đi

12 tháng 11 2017

Hong Ra On chuyên gì thế hả sao gọi mình là sao

\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)

\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\sqrt{\dfrac{\left(y-3\right)^2}{2}}+\sqrt{\dfrac{\left(y+1\right)^2}{2}}=2\sqrt{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\left|\dfrac{\left(y-3\right)}{\sqrt{2}}\right|+\left|\dfrac{\left(y+1\right)}{\sqrt{2}}\right|=\left|\dfrac{4}{\sqrt{2}}\right|=2\sqrt{2}=VP\end{matrix}\right.\)đẳng thức khi

\(7\ge x\ge\dfrac{5}{2}\)

kết luận

nghiệm của pt là : \(7\ge x\ge\dfrac{5}{2}\)

7 tháng 10 2020

Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:

\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)

hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)

\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)

\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)

\(t+1+t+3=14\)

\(2t+4=14\)

2t=10

t=5

Từ đó \(x=\frac{25+5}{2}=15\)

8 tháng 10 2020

có một chút thiếu sót và sai nha ! cảm ơn bnaj đã tả lời câu hỏi này !