Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
a) 2 p + 4 2 p 2 − p − 10 = 2 ( p + 2 ) ( 2 p − 5 ) ( p + 2 ) = 2 2 p − 5
b) Tương tự câu a.
a: p>q
nên 3p>3q
=>3p+1>3q+1
c: p>q
nên -7p<-7q
=>-7p+4<-7q
b ) Vì P chia hết cho 5
=> 7x+ 3y chia hết cho 5
=> 2 ( 7x + 3y ) chia hết cho 5
=> 14x + 6 y chia hết cho 5
=> 5x + 9x + 6y chia hết cho 5
=> 5x + 3( 3x + 2y ) chia hết cho 5
=> 3. ( 3x+2y) chia hết cho 5 ( vì 5x chia hết cho 5 )
Vì( 3;5 ) = 1
=> 3x+2y chia hết cho 5
=> đpcm
c) Để P+ Q =20
=> 7x+3y + 3x + 2y = 20
=> 10 x + 5y = 20
=> 5 ( 2x+y ) =20
=> 2x + y = 4
Vì x;y là số nguyên dương mà 2x + y = 4
=> 2x < 4 ; y<4
=> x<2 => x= 1
=> y=2
a) Ta có : \(S_{AMB}=\frac{cz}{2};S_{BMC}=\frac{ax}{2};S_{MAC}=\frac{by}{2}\)
\(\Rightarrow S_{AMB}+S_{BMC}+S_{MAC}=\frac{cz+ax+by}{2}=S_{ABC}\)
\(\Rightarrow ax+by+cz=2S_{ABC}\)(đpcm)
b) Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)\ge\left(\sqrt{\frac{a}{x}.ax}+\sqrt{\frac{b}{y}.by}+\sqrt{\frac{c}{z}.cz}\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{ax+by+cz}=\frac{2\left(\frac{a+b+c}{2}\right)^2}{\frac{ax+by+cz}{2}}=\frac{2p^2}{S}\)(đpcm)
+) p = 2
=> 3p2+4= 15 không phải số nguyên tố => loại
+) p = 3
=> 2p2+3= 21 không phải SNT => loại
+) p = 5
=> 2p2-1= 49 không phải SNT => loại
+) p = 7
=> 2p2-1 = 97
2p2+3 = 101
3p2+4 = 151
=> thỏa mãn
+) p>7
Xét có dạng p = 7k+1, 7k+2, 7k+3, 7k-1, 7k-2, 7k-3 thì không thỏa mãn
Vậy p = 7 để ...
Chịu khó đọc, chẳng biết sao ko dùng đc phần kí tự