Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(n=2\Rightarrow P_2=2!=2=1!+1\) (đúng)
- Với \(n=3\Rightarrow\left\{{}\begin{matrix}P_3=3!=6\\2P_2+P_1+1=2.2!+1+1=6\end{matrix}\right.\) (đúng)
- Giả sử đẳng thức đúng với \(n=k\ge2\) hay:
\(P_k=\left(k-1\right)P_{k-1}+\left(k-2\right)P_{k-2}+...+P_1+1\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay
\(P_{k+1}=k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1\)
Thật vậy, ta có:
\(k.P_k+\left(k-1\right)P_{k-1}+...+P_1+1=k.P_k+P_k\)
\(=\left(k+1\right)P_k=P_{k+1}\) (đpcm)
\(\left\{{}\begin{matrix}SM\perp\left(MNPQ\right)\Rightarrow SM\perp PN\\PN\perp MN\end{matrix}\right.\) \(\Rightarrow PN\perp\left(SMN\right)\)
Lại có \(\left\{{}\begin{matrix}PN\perp\left(SMN\right)\\SN\in\left(SMN\right)\end{matrix}\right.\) \(\Rightarrow PN\perp SN\)
- Tìm ảnh của điểm Q qua phép tịnh tiến theo \(\overrightarrow{CD}=\overrightarrow{U}=\overrightarrow{QQ'}\)
Khi đó MN=QQ’ , suy ra MQ=NQ’ . Cho nên PN+MQ=PN+NQ’ ngắn nhất khi P,N,Q’ thẳng hàng .
- Các bước thực hiện :
+/ Tìm Q’ sao cho : \(\overrightarrow{CD}=\overrightarrow{U}=\overrightarrow{QQ'}\)
+/ Nối PQ’ cắt AD tại điểm N
+/ Kẻ NM //CD cắt BC tại M . Vậy tìm được M,N thỏa mãn yêu cầu bài toán .
s A B C D N P I o M
+ Chọn mp (SAC) chứa PN .
Ta có: - (SAC) giao ( BID) = I .
* I ∈ SC ⊂ (SAC).
* I ∈ ( BID).
Trong mp ( ABCD) có : AC cắt BD tại O .
=> Giao tuyến là OI.
Cho OI cắt PN tại đâu thì đấy là giao điểm.