Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=1.2^2+2.3^2+3.4^2+...+99.100^2=1.2.\left(3-1\right)+2.3.\left(4-2\right)+...+99.100.\left(101-99\right)\)
\(A=\left(1.2.3+2.3.4+...+99.100.101\right)-\left(2.3+3.4+...+99.100\right)\)Đối với bt trước ông nhân với 4 =>đc tổng 98.99.100.101
Đối với bt sau ông nhân với 3 được tổng là 99.100.101
=>A=98.99.100.101 - 99.100.101=97.99.100.101=96990300
nhớ tick nha lắc lư
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2010}{2010}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
Hình như đề là thế này :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
= \(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
ta có \(\frac{1}{\sqrt{1.2}}khác\frac{1}{\sqrt{1}+\sqrt{2}}\)
................................
\(\frac{1}{\sqrt{99.100}}khấc\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
=> \(A=\frac{1}{1}-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}\)
\(A=\frac{2005}{2006}\)
Em cần làm gì với biểu thức này?