Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giả sử y và x tỉ lệ thuận theo tỉ hệ số tỉ lệ k; (k ≠ 0)
Khi đó ta có: y1 = k.x1 ; y2 = k.x2
Do đó y1 + y2 = kx1 + kx2 = k(x1 + x2)
Hay 10 = k.2 ⇒ k = 5.
Do đó y = 5x.
* Với x1 = 3 thì y1 = 5.3 =15
Vì x1 + x2 = 2 nên x2 = 2 – x1= 2 - 3 = -1
Vì y1 + y2 = 10 nên y2 = 10 – y1 = 10 -15 = - 5
2. a. Vì x và y là hai đại lượng tỉ lệ thuận, nên:
y = ax (a là hệ số tỉ lệ, a khác 0)
Khi đó: y1 = a.x1 và y2 = a.x2
Suy ra y1 + y2 = ax1 + ax2 = a(x1 + x2)
Vậy : y = -5x.
b. Với x = -1 thì y = - 5.(-1) = 5.
~ Hc tốt!!!
thay điểm A (1.3) vào ta có \(3=a\times1\Rightarrow a=3\)
vậy hàm số là y= 3x.
b. đồ thị đi qua hai điểm A(1,3) và O(0;0) như hình vẽ :
Bài 1:
a, Xét ΔAOD và ΔBOD, ta có:
OA = OB (gt)
∠(AOD) = ∠(BOD)(vì OD là tia phân giác)
OD cạnh chung
Suy ra: ΔAOD= ΔBOD(c.g.c)
Vậy: DA = DB (hai cạnh tương ứng)
b, ΔAOD= ΔBOD (chứng minh trên)
⇒ ∠(ADO) = ∠(BDO) (hai góc tương ứng) (1)
Ta có: ∠(ADO) + ∠(BDO) =180o(hai góc kề bù) (2)
Từ (1) và (2) suy ra: ∠(ADO) = ∠(BDO) =90o
Vậy: OD ⊥AB
Bài 2:
a, Xét ΔABD và ΔEBD, ta có:
AB = BE (gt)
∠(ABD) = ∠(DBE) (vì BD là tia phân giác)
BC cạnh chung
Suy ra: ΔABD = ΔEBD(c.g.c)
⇒ DA = DE (hai cạnh tương ứng)
b, Ta có: ΔABD = ΔEBD(chứng minh trên)
Suy ra: ∠A = ∠(BED) (hai góc tương ứng)
Mà ∠A =90onên ∠(BED) =90o
= 0 à
= 22222444444 * 2222255555 * 1 = 22222444444 + 55555
Rồi bạn tự tính he