Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
+) \(2113^{2000}=\left(2113^4\right)^{500}=\left(\overline{...1}\right)^{500}\) ( Tận cùng là 1 ) \(\left(1\right)\)
+)\(2011^{2000}=2011.2011...2011=\overline{...1}\) ( Tận cùng là 1 ) \(\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\)
\(\Rightarrow2113^{2000}-2011^{2000}\\ =\overline{...1}-\overline{...1}\\ =\overline{...0}⋮2\&5\left(đcpcm\right)\)
abcabc = abc x 1000 + abc
= abc x ( 1000 + 1)
= abc x 1001
= abc x 11 x 91
= > abc : 11
a, Số nào chia hết cho 2 mà không chia hết cho 5: 422
b, Số nào chia hết cho 5 mà không chia hết cho 2: 105
c, Số nào chia hết cho cả 2 và 5: 6760
d, Số nào không chia hết cho cả 2 và 5: 3071
b: Đặt \(A=\overline{5a43b}\)
A chia hết cho 2 và 5 nên A có tận cùng là 0
=>b=0
=>\(A=\overline{5a430}\)
A chia hết cho 9
=>5+a+4+3+0 chia hết cho 9
=>a+12 chia hết cho 9
=>a=6
=>Số cần tìm là 56430
c: Đặt \(B=\overline{735a2b}\)
B chia hết cho 5 và không chia hết cho 2 nên b=5
=>\(B=\overline{735a25}\)
B chia hết cho 9
=>7+3+5+a+2+5 chia hết cho 9
=>a+22 chia hết cho 9
=>a=5
Vậy: Số cần tìm là 735525
d: Đặt \(C=\overline{5a27b}\)
C chia hết cho 2 và 5 nên C có tận cùng là 0
=>b=0
=>\(C=\overline{5a270}\)
C chia hết cho 9
=>5+a+2+7+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
Vậy: Số cần tìm là 54270
e: Đặt \(D=\overline{7a142b}\)
Vì D chia hết cho cả 2 và 5 nên D có tận cùng là 0
=>b=0
=>\(D=\overline{7a1420}\)
D chia hết cho 9
=>7+a+1+4+2+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
=>Số cần tìm là 741420
g: \(X=\overline{40ab}\)
X chia hết cho 2 và 5 nên b=0
=>\(X=\overline{40a0}\)
X chia hết cho 3
=>4+a+0+0 chia hết cho 3
=>a+4 chia hết cho 3
=>\(a\in\left\{2;5;8\right\}\)
A = 21132000 - 21112000
A = (21134)500 - \(\overline{..1}\)
A = \(\overline{..1}\)500 - \(\overline{..1}\)
A = \(\overline{..0}\) ⋮ 2 va 5 (đpcm0