K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

\(\left(2-x\right)\left(x+\frac{2}{3}\right)>0\)

th1 : 

\(\hept{\begin{cases}2-x>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Rightarrow}x< -\frac{2}{3}}\)

th2 :

\(\hept{\begin{cases}2-x< 0\\x+\frac{2}{3}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}\Rightarrow loai}\)

`#040911`

`a)`

`2x^2 - 3x = 0`

`\Rightarrow x(2x - 3) = 0`

`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)

`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)

`\Rightarrow`\(\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy, \(x\in\left\{0;\dfrac{3}{2}\right\}\)

`b)`

\(x+\dfrac{1}{2}-z-\dfrac{2}{3}=\dfrac{1}{2}?\)

Bạn xem lại đề

`c)`

\(x^3-x^2=0\\ \Rightarrow x^2\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy, \(x\in\left\{0;1\right\}.\)

5 tháng 9 2023

\(a,2x^2-3x=0\\ \Leftrightarrow x\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\\ b,Xem.lại,đề\\ c,x^3-x^2=0\\ \Leftrightarrow x^2.\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

7 tháng 11 2015

a) A=x(x-2) 

Để A>0

TH1:  x>0 và x-2 < 0 ==> 0<x<2

TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;

Vậy : Để A< 0 thì 0<x<2

Để A lớn hơn hoặc bằng 0 thì :

TH1: x >=0 và x-2>=0 ===> x>=2

TH2 : x<=0 và x-2<=2 ===> x<=2

như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2

6 tháng 11 2015

để A = x.(x-2) >=0 thi

TH1

x< hoac bang 0               =>x nho hon hoc bang 2

x-2< hoac bang => x<2   =>x nho hon hoc bang 2

TH2

x> hoac bang 0

x-2> hoac bang 0 => xon hon hoac bang 2

                         Vay x lon hon hoac bang 2 hoac nho hon hoac bang 2

                                                                                                                 By Tuấn

8 tháng 8

Bài 1

A = \(x\)(\(x-2\))

\(x=0\)\(x-2\) = 0 ⇒ \(x=2\)

Lập bảng ta có:

\(x\)      -   0             +                   2        +
\(x-2\)     -                    -                   0       +
A =\(x\left(x-2\right)\)      +  0             -                    0         +

Để A ≥ 0 thì  \(x\) ≥ 0 hoặc \(x\ge\) 2

Để A < 0  thì   0 < \(x\) < 2 

 

8 tháng 8

Bài 1

b; \(\dfrac{-x+2}{3-x}\)   

    - \(x\) + 2 = 0 ⇒ \(x=2\)

      3 - \(x=0\) ⇒ \(x=3\)

Lập bảng:

\(x\)               2                                   3
-\(x+2\)        +     0     -                                  - 
3 - \(x\)        +           +                            0    -
A = \(\dfrac{-x+2}{3-x}\)        +            -                                  +

B > 0 ⇔   \(x< 2\) hoặc \(x>3\)

B < 0 ⇔ 2 < \(x\) < 3

  

    

11 tháng 9 2019

B1: Đk: 5x ≥ 0 => x ≥ 0

Vì |x + 1| ≥ 0 => |x + 1| = x + 1

     |x + 2| ≥ 0 => |x + 2| = x + 2

     |x + 3| ≥ 0 => |x + 3| = x + 3

     |x + 4| ≥ 0 => |x + 4| = x + 4

=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

 => x + 1 + x + 2 + x + 3 + x + 4 = 5x

=> 4x + 10 = 5x

=> x = 10

B2: Ta có: |x - 2018| = |2018 - x|

=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018

Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0

Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)

Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)

Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018

B3:

a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0

=> |x + 1| + |2y - 4| ≥ 0

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy...

b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0

 => |x - y + 1| + (y - 3)2 ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy...

c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0  ; |2x - 1| ≥ 0 

=> |x + y| + |x - z| + |2x - 1| ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)

22 tháng 12 2019

coi lại mới thấy trình bày ngờ-u :)) 

B1: Đk: 5x ≥ 0 => x ≥ 0

=> x + 1 > 0 => |x + 1| = x + 1

=> x + 2 > 0 => |x + 2| = x + 2 

=> x + 3 > 0 => |x + 3| = x + 3 

=> x + 4 > 0 => |x + 4| = x + 4 

Ta có:  |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

=> .... Làm tiếp như dưới

AH
Akai Haruma
Giáo viên
27 tháng 6 2023

1. 

$(3^2-2^3)x+3^2.2^2=4^2.3$

$\Leftrightarrow x+36=48$

$\Leftrightarrow x=48-36=12$

2.

$x^5-x^3=0$

$\Leftrightarrow x^3(x^2-1)=0$

$\Leftrightarrow x^3(x-1)(x+1)=0$

$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$

$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.

$(x-1)^2+(-3)^2=5^2(-1)^{100}$

$\Leftrightarrow (x-1)^2+9=25$

$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$

$\Rightarrow x-1=4$ hoặc $x-1=-4$

$\Leftrightarrow x=5$ hoặc $x=-3$

4.

$(2x-1)^2-(2x-1)=0$

$\Leftrightarrow (2x-1)(2x-1-1)=0$

$\Leftrightarrow (2x-1)(2x-2)=0$

$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$

$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$

$\Lef

`@` `\text {Ans}`

`\downarrow`

\((3^2-2^3)x+3^2.2^2=4^2.3\)

`=> x + (3*2)^2 = 48`

`=> x+6^2 = 48`

`=> x + 36 = 48`

`=> x = 48 - 36`

`=> x=12`

Vậy, `x=12`

\(x^5-x^3=0\)

`=> x^3(x^2 - 1)=0`

`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

Vậy, `x \in {0; +- 1 }`

\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)

`=> (x-1)^2 + 9 = 25*1`

`=> (x-1)^2 + 9 = 25`

`=> (x-1)^2 = 25 - 9`

`=> (x-1)^2 = 16`

`=> (x-1)^2 = (+-4)^2`

`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Vậy, `x \in {5; -3}`

\((2x-1)^2-(2x-1)=0\)

`=> (2x-1)(2x-1) - (2x-1)=0`

`=> (2x-1)(2x-1-1)=0`

`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy, `x \in {1; 1/2}`

26 tháng 10 2023

\(a,\left(x+2\right)^{10}+\left(x+2\right)^8=0\\ \Leftrightarrow\left(x+2\right)^8\left[\left(x+2\right)^2+1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^8=0\\\left(x+2\right)^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x+2\right)^2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\end{matrix}\right.\\ b,\left(x+3\right)^{10}-\left(x+3\right)^8=0\\ \Leftrightarrow\left(x+3\right)^8\left[\left(x+3\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^8=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x+3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x+3=1\\x+3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\\x=-4\end{matrix}\right.\)

17 tháng 8 2016

A) \(\left(x+1\right).\left(x-2\right)< 0\)

\(=x.\left(x-2\right)+1.\left(x-2\right)< 0\)

\(=x.\left(x-2\right)+\left(x-2\right)< 0\)

\(\Rightarrow x\in Z\)

Vậy \(x>2\)

B)\(\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)

\(x.\left(x+\frac{2}{3}\right)-2\left(x\frac{2}{3}\right)\)

\(\Rightarrow x+\frac{2}{3}=sốnguyên\)

Nên \(x\)thuốc phân số.

Câu c) tự làm nha.