K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

Ta có;\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\Leftrightarrow\frac{2a}{14}-\frac{7}{14}=\frac{1}{b+1}\Leftrightarrow\frac{2a-7}{14}=\frac{1}{b+1}\)

\(\Leftrightarrow\left(2a-7\right)\left(b+1\right)=14\)

rồi lập bảng là tìm được a và b

15 tháng 3 2017

bang co bn cot ha bn

11 tháng 2 2018

Quy đồng

\(\frac{2a-7}{14}=\frac{1}{b+1}\)

suy ra: 1 là ước của 2a-7 (hihi huề vốn)

và b+1 là ước cùa 14

U(14)={1,2,7,14}

Cho b+1=1 suy ra b=0 thay vào a=21/2=10,5 (loại bỏ)

Cho b+1=2 suy ra b=1 thay vào a=7 (lấy nhe)

Cho b+1=7 suy ra b=6 thay vào a=9/2=4,5 (loại bỏ)

Cho b+1=14 suy ra b=13 thay vào a=7/2=3,5 (loại bỏ)

Vậy là sau thời gian mài mò chúng ta được a=7, b=1 là số nguyên thôi, trường hợp còn lại là số bị mẻ nên bỏ kakaka

11 tháng 2 2018

ta co :\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\Rightarrow\frac{2a}{14}-\frac{7}{14}=\frac{1}{b+1}\)

\(\left(2a-7\right).\left(b+1\right)=14\)

lập bảng rồi tự tìm a, b nhé !

19 tháng 2 2017

\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+3}\)

\(\Leftrightarrow\frac{2a}{14}-\frac{7}{14}=\frac{1}{b+3}\)

\(\Leftrightarrow\frac{2a-7}{14}=\frac{1}{b+3}\)

\(\Rightarrow\left(2a-7\right)\left(b+3\right)=14\)

=> 2a - 7 và b + 3 là ước của 14

=> Ư(14) = { - 14; - 1; 1; 14 }

Vì 2a - 7 là số nguyên lẻ => 2a - 7 = { - 1; 1 }

+ ) Với 2a - 7 = - 1 thì b + 3 = - 14 => a = 3 thì b = - 17

+ ) Với 2a - 7 = 1 thì b + 3 = 14 => a = 4 thì b = 11

Vậy ( a;b ) = { ( 3;-17 ); ( 4;11 ) }

23 tháng 2 2017

chuẩn 

1 tháng 10 2021

\(\frac{a}{7}=\frac{1}{b+3}+\frac{1}{2}=\frac{2+b+3}{2b+6}=\frac{b+5}{2b+6}\)

\(\Rightarrow a=\frac{7b+35}{2b+6}\)

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

13 tháng 8 2015

a) Biến Đổi vế phải ta có :

a^2 + 3a + 2 = a^2 + 2a + a + 2 

                   = a ( a+ 2 ) +a + 2

                     = ( a+  1 )(a+ 2 ) 

Vậy VT = VP đẳng thức được chứng minh