K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

\(a,\left(2x-1\right)^2-\left(2x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-3\right)=0\)

\(\Leftrightarrow-4\left(2x-1\right)=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(b,\left(x+5\right)\left(x-2\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2+3x-10\right)-\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2+3x-10-x^2+9=0\)

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow3x=1\)

\(\Leftrightarrow x=\frac{1}{3}\)

19 tháng 2 2021

a) (2x - 1)2 - (2x + 3)(2x - 1) = 0

<=> (2x - 1)(2x - 1 - 2x - 3) = 0

<=> (2x - 1).(-4) = 0

<=> 2x - 1 = 0

<=> x = 1/2 

Vậy x = 1/2 là nghiệm phương trình

b) Ta có (x - 5)(x - 2) - (x - 3)(x + 3) = 0

<=> x2 - 7x + 10 - x2 + 9 = 0

<=> -7x + 19 = 0

<=> -7x = - 19

<=> x = 19/7

Vây x = 19/7 là nghiệm phương trình

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

22 tháng 12 2023

a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)

\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)

b) \(\left(x+3\right)^2-5x-15=0\)

\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

c) \(2x^5-4x^3+2x=0\)

\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)

\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)

\(\Rightarrow2x\left(x^2-1\right)^2=0\)

\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(\text{#}Toru\)

16 tháng 10 2023

a) \(6x^2-72x=0\)

\(6x\left(x-12\right)=0\)

\(6x=0\) hoặc \(x-72=0\)

*) \(6x=0\)

\(x=0\)

*) \(x-12=0\)

\(x=12\)

Vậy \(x=0;x=12\)

b) \(-2x^4+16x=0\)

\(-2x\left(x^3-8\right)=0\)

\(-2x=0\) hoặc \(x^3-8=0\)

*) \(-2x=0\)

\(x=0\)

*) \(x^3-8=0\)

\(x^3=8\)

\(x=2\)

Vậy \(x=0;x=2\)

c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)

\(x^2-5x-x^2+6x-9=0\)

\(x-9=0\)

\(x=9\)

d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(x^3-6x^2+12x-8-x^3+8=0\)

\(-6x^2+12x=0\)

\(-6x\left(x-2\right)=0\)

\(-6x=0\) hoặc \(x-2=0\)

*) \(-6x=0\)

\(x=0\)

*) \(x-2=0\)

\(x=2\)

Vậy \(x=0;x=2\)

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

2 tháng 1 2022

plss

16 tháng 11 2021

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

21 tháng 10 2023

a) \(\left(2x+1\right)\left(x-2\right)-2x^2=0\)

\(\Leftrightarrow2x^2-4x+x-2-2x^2=0\)

\(\Leftrightarrow\left(2x^2-2x^2\right)-\left(4x-x\right)-2=0\)

\(\Leftrightarrow-3x-2=0\)

\(\Leftrightarrow-3x=2\)

\(\Leftrightarrow x=-\dfrac{2}{3}\)

b) \(\left(x+3\right)\left(2x-1\right)+x^2=9\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+x^2-9=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1+x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\3x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{4}{3}\end{matrix}\right.\)

`#3107.101107`

a)

`(2x + 1)(x - 2) - 2x^2 = 0`

`<=> 2x^2 - 3x - 2 - 2x^2 = 0`

`<=> -3x - 2 = 0`

`<=> -3x = 2`

`<=> x = -2/3`

Vậy, `x=-2/3`

b)

`(x + 3)(2x - 1) + x^2 = 9`

`<=> 2x^2 - 5x - 3 + x^2 = 9`

`<=> 3x^2 - 5x - 3 = 9`

`<=> 3x^2 - 3x - 12 = 0`

`<=> 3x^2 + 4x - 9x - 12 = 0`

`<=> (3x^2 - 9x) + (4x - 12) = 0`

`<=> 3x(x - 3) + 4(x - 3) = 0`

`<=> (3x + 4)(x - 3) = 0`

`<=>` TH1: `3x + 4 = 0`

`<=> 3x = -4`

`<=> x = -4/3`

TH2: `x - 3 = 0`

`<=> x = 3`

Vậy,` x \in {-4/3; 3}.`

30 tháng 7 2021

a)   \(\left(2x-1\right)^2-25=0\)

⇔ \(\left(2x-1\right)^2-5^2=0\)

⇔  \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

⇒  \(2x-1-5=0\) hoặc \(2x-1+5=0\)

⇔      \(x=3\)           hoặc  \(x=-2\)

30 tháng 7 2021

Bài 1: Tìm x

a) (2x-1) ² - 25 = 0

<=> (2x-1)2 =  25

<=>  2x-1 = 5  hay 2x-1 =-5

<=>  2x= 6      hay  2x=-4

<=>   x=3     hay    x= -2

Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0

<=> (x-1)(3x+1)=0

<=> x-1=0  hay  3x+1=0

<=> x=1 hay 3x=-1

<=> x=1 hay x=\(\dfrac{-1}{3}\)

Vậy S={1;\(\dfrac{-1}{3}\)}

c) 2(x+3) - x ² - 3x = 0

<=> 2(x+3)- x(x+3)=0

<=> (x+3)(2-x)=0

<=> x+3=0 hay 2-x=0

<=> x=-3  hay  x=2

Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0

<=> x(x-2)+3(x-2)=0

<=> (x-2)(x+3)=0

<=> x-2=0 hay x+3=0

<=> x=2 hay x=-3

Vậy S={2;-3}
e) 4x ² - 4x +1 = 0

<=> (2x-1)2=0

<=> 2x-1=0

<=> 2x=1

<=> x=\(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2  = 0

<=> x(1+5x)=0

<=>x=0 hay 1+5x=0

<=> x=0 hay 5x=-1

<=> x=0 hay x= \(\dfrac{-1}{5}\)

Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0

<=> x2-x+3x-3=0

<=> x(x-1)+3(x-1)=0

<=>  (x-1)(x+3)=0

<=> x-1=0 hay x+3=0

<=> x=1  hay x=-3

Vậy S={1;-3}

 

12 tháng 10 2021

\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

15 tháng 9 2021

a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0

<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0

<=> (4x + 1) + 2x2 - 2 = 0

<=> 4x + 1 + 2x2 - 2 = 0

<=> 2x2 + 4x - 2 + 1 = 0

<=> 2x2 + 4x - 1 = 0

<=> 2x2 + 4x = 1

<=> 2x(x + 2) = 1

Vì 1 chỉ có tích là 1 . 1 nên:

<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)

a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)

\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)

\(\Leftrightarrow12x=-2\)

hay \(x=-\dfrac{1}{6}\)

b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)

\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)

\(\Leftrightarrow2x=-40\)

hay x=-20