Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
c. x^2-5x+6=0
<=> x^2-5x=-6
<=> -4x=-6
<=> x=-6/-4
vậy tập nghiệm của pt là s={-6/-4}
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)