Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
a,
A = 4 + 22 + 23 + 24 + .. + 220
Đặt A1 = 22 + 23 + 24 + .. + 220
2A1 = 2.( 22 + 23 + 24 + .. + 220)
= 23 + 24 + 25 + ... + 22
2A1 - A1 = (22 + 23 + 24 + .. + 220) - (23 + 24 + 25 + ... + 22 )
A1 = 221 - 22
= 221 - 4
=> A = 4 + 221 - 4
=> A = 221
Lời giải:
Đặt $A=3^2+3^3+3^4+...+3^{2006}$
$\Rightarrow 3A=3^3+3^4+3^5+...+3^{2007}$
$\Rightarrow 3A-A=3^{2007}-3^2$
$\Rightarrow 2A=3^{2007}-9$
Vậy: $(4-x)+\frac{3^{2007}-9}{2}=3^{2016}:243=3^{2016}:3^5=3^{2011}$
$2(4-x)+3^{2007}-9=2.3^{2011}$
$-2x-1=2.3^{2011}-3^{2007}=3^{2007}(2.3^4-1)=161.3^{2007}$
$\Rightarrow x=\frac{1-161.3^{2007}}{2}$
a) \(3^x.3=243\)
\(\Rightarrow3^{x+1}=3^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
b) \(2^x.7=56\)
\(2^x=56:7\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
\(3^x.3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
\(2^x.7=56\)
\(\Rightarrow2^x=56:7\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
\(a,2^x+2^{x+3}=144\\ 2^x.\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=144:9\\ 2^x=16=2^4\\ vậy:x=4\)
\(b,\left(x-5\right)^{2022}=\left(x-5\right)^{2021}\\ Vì:\left[{}\begin{matrix}0^{2022}=0^{2021}\\1^{2022}=1^{2021}\end{matrix}\right.\\ Vậy:\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
B=3+3^2+...+3^100.
3B=3.3+3^2.3+...+3^100.3
3B=3^2+3^3+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+...+3^100)
2B=3^101-3
Mà2B+3=3^n
Suy ra:3^101-3+3=3^n
3^n+3^101
Vậy n=101
Bài 1(b) làm tương tự,còn bài (a) thì bạn tự làm
Bài 1 :
\(x^{2006}=x^2\)
\(\Leftrightarrow x^{2006}-x^2=0\)
\(\Leftrightarrow x^2\left(x^{2004}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^{2004}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^{2004}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Bài 2 :
a) \(3^x.3=243\)
\(\Leftrightarrow3^x=81\)
\(\Leftrightarrow3^x=3^4\)
\(\Leftrightarrow x=4\)
b) \(x^{20}=x\)
\(\Leftrightarrow x^{20}-x=0\)
\(\Leftrightarrow x\left(x^{19}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^{19}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)