Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số đồng biến thì (k-6)(k+1)>0
=>k>6 hoặc k<-1
b: Để hàm số nghịch biến thì (k+2)(2k-1)<0
=>-2<k<1/2
a) Để hàm số đồng biến thì k(k-3)>0
\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)
b) Để hàm số nghịch biến thì k(k-3)<0
hay 0<x<3
a: Để hàm số đồng biến thì (k-6)(k+1)>0
=>k>6 hoặc k<-1
b: Để hàm số nghịch biến thì \(2k^2+4k-k-2< 0\)
=>(k+2)(2k-1)<0
=>-2<k<1/2
a) Để hàm đồng biến \(\Leftrightarrow a=k^2-2k-3>0\)
\(\Leftrightarrow\left(k-3\right)\left(k+1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< -1\end{matrix}\right.\)
Vậy...
b)Để hàm nghich biến \(\Leftrightarrow a=k^2-2k-3< 0\)
\(\Leftrightarrow-1< k< 3\)
Vậy...
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Ở định nghĩa trong SGK
Cho hàm số y=ax+b
Đồng biến khi a>0
Nghich biến khi a<0
a) Đồng biến
k^2-5k-6 >0 <=> k<-1 hoặc k>6
b) Nghịch biến
2k^2+3k-2 <0 <=> -2<k<1/2
câu b bận có thể cho mình chi tiết hơn đc kg