K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

a) \(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)

  \(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)

\(A=\left(\frac{1}{3}-\frac{1}{203}\right):2=\frac{100}{609}\)

Các ý còn lại cx tách như vật nha 

CT chung này  \(\frac{x}{n\left(n+x\right)}=\frac{1}{n}-\frac{1}{n+x}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{201.203}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)

\(2A=\frac{1}{3}-\frac{1}{203}=\frac{200}{609}\)

\(A=\frac{100}{609}\)

Tương tự với b thôi.

21 tháng 5 2021

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

21 tháng 5 2021

các bạn có  về sweet home

16 tháng 4 2017

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{44}{45}\)

=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{44}{45}\)

=> \(1-\frac{1}{x+1}=\frac{44}{45}\)

=> \(\frac{x}{x+1}=\frac{44}{45}\)

=> x = 44

b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

.................

\(\frac{1}{45^2}< \frac{1}{44.45}=\frac{1}{44}-\frac{1}{45}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< 1\)

16 tháng 4 2017

a) 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/(x+1)=1-1/(x+1)=x/(x+1)=44/45

=> x=44

b/ 1/22 < 1/1.2; 1/32 < 1/2.3; ....; 1/452 < 1/44.45

=> A < 1/1.2+1/2.3+...+1/44.45=1-1/45=44/45 < 1

=> A < 1

21 tháng 12 2021

giải hộ mình với cảm ơn

21 tháng 12 2021

Bài 2: 

a: 

=>-2x=-6

hay x=3

d) Ta có: \(x+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}=\dfrac{-37}{45}\)

\(\Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{-37}{45}\)

\(\Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{-37}{45}\)

\(\Leftrightarrow x=\dfrac{-37}{45}+\dfrac{1}{45}-\dfrac{1}{5}=\dfrac{-36}{45}-\dfrac{1}{5}=\dfrac{-4}{5}-\dfrac{1}{5}=-1\)

Vậy: x=-1

13 tháng 8 2018

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(\frac{2}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{2}{49\cdot51}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=\frac{1}{3}-\frac{1}{51}\)

\(=\frac{16}{51}\)

13 tháng 8 2018

a) 1/1.2+1/2.3+1/3.4+...+1/99.100

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 + ... + 1/99 - 1/100

= 1/1 - 1/100

= 99/100

b) 2/3.5+2/5.7+...+2/49.51

= 2 . ( 1/3.5 + 1/5.7 + ... + 1/49.51 )

= 2 . ( 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/50 )

= 2 . ( 1/3 - 1/50 )

= 2 . 47/150

= 47/75

6 tháng 3 2023

Bài 1 :

A = 12 + 22 + 32 +....+n2 

A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)

A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n

A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n

A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]

A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]

A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)

A =(n+1)n/2 + 1/3.(n-1)n(n+1)

A = n(n+1)[1/2 + 1/3 .(n-1)]

A = n.(n+1) \(\dfrac{3+2n-2}{6}\)

A= n.(n+1)(2n+1)/6

Bài 2 : 

a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070

    (x+10 +x+1).{( x+10 - x -1): 1 +1):2  = 5070

    (2x + 11)10 : 2 = 5070 

     ( 2x + 11)5 = 5070

      2x+ 11 = 5070:5

         2x = 1014 - 11

        2x =   1003

          x = 1003 :2

          x = 501,5 

        b, 1 + 2 + 3 +...+x = 820

           ( x + 1)[ (x-1):1 +1] : 2 = 820

           (x +1).x = 820 x 2

           (x +1).x = 1640

            (x +1) .x = 40 x 41

                 x = 40 

 

 

26 tháng 4 2017

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=1\(-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(\dfrac{47}{60}\)

B=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)=

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}+\dfrac{1}{101}\)

=\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\)

25 tháng 4 2017

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

= \(\dfrac{47}{60}\)

B= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= 2\(\left(1-\dfrac{1}{101}\right)\)

= \(\dfrac{200}{101}\)