K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)

c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)

\(=\frac{393939-10101}{1212120}\)

\(=\frac{383838}{1212120}\)

\(=\frac{19}{60}\)

26 tháng 4 2020

ai biêt

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

4 tháng 7 2015

Gọi d = ƯC (21n + 3; 6n + 4) (d là số  nguyên tố  vì  nếu tử và mẫu có chung ước thì sẽ có chung các uơcs nguyên tố   )

=> 21n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> 7. (6n +4) - 2.(21n +3) chia hết cho d 

Hay 22 chia hết cho d; d nguyên tố nên d = 2 hoặc 11

+) d = 2 => 21n + 3 chia hết cho 2 và 6n + 4 chia hết cho 2 (luôn đúng)

Chỉ cần 21n +3 chia hết cho 2 => n lẻ

+) d = 11 : để 21n + 3 chia hết cho 11 => 22n  - - n + 3  chia hết cho 11

=>  n - 3  chia hết cho 11  => n = 3 + 11k

=> 6n + 4 = 6(3 + 11k) + 4 = 66k + 22 chia hết cho 11

Vậy n = 3 + 11k hoặc n lẻ thì A rút gọn được

4 tháng 7 2015

Ta có :
(21n+3)/(6n+4) 
= 4 - (3n+13)/(6n+4) 
= 4 - 1/2.(6n+26)/(6n+4) 
= 4 - 1/2.(1+22/(6n+4)) 
Để là số nguyên thì 6n+4 phải là ước của 22 và thương 22/(6n+4) phải là số lẻ 
=> 6n+4=22 (Vì n là số tự nhiên nên chỉ có giá trị này thỏa mãn) 

=> 6n = 18

=> n = 3 

kết bạn mình nha

5 tháng 4 2017

\(A=\frac{6n+99}{3n+4}\)

\(A=\frac{6n+8+91}{3n+4}\)

\(=\frac{2\left(3n+4\right)+91}{3n+4}\)

\(=2+\frac{91}{3n+4}=\frac{7.13}{3n+4}\)

vậy  \(3n+4\ne7\)

\(3n+4\ne13\)

\(3n+4\ne91\)

\(\Rightarrow\)\(3n+4\ne1;3;29\)

mk nghĩ vậy bạn ạ

20 tháng 12 2018

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

24 tháng 4 2016

a)\(\frac{6n+99}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}\in Z\)

=>91 chia hết 3n+4

=>3n+4\(\in\)Ư(91)

=>3n+4\(\in\){1,-1,91,-91}

=>n\(\in\){7;1;277;-269}

b)gọi d là UCLN(6n+99;3n+4)

ta có:

[6n+99]-[2(3n+4)] chia hết d

=>6n+99-6n+8 chia hết d

=>91 chia hết d

=>d\(\in\){7;1;277;-269}

24 tháng 4 2016

\(\frac{6n+99}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}\in Z\)

=>3n+4Ư(91)

=>3n+4{1,-1,91,-91}

=>n{7;1;277;-269}

b)gọi d là UCLN(6n+99;3n+4)

ta có:

[6n+99]-[2(3n+4)] chia hết d

=>6n+99-6n+8 chia hết d

=>91 chia hết d

=>d{7;1;277;-269}

24 tháng 1 2020

Chứng minh tử và mẫu của mỗi P/S đều nguyên tố cùng nhau là đc bạn ạ