Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )
Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)
Chứng minh tương tự khi đó :
\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)
\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)
\(\Rightarrow P\le2016\)
Ta có:
\(\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)
\(\Leftrightarrow x+y+z=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)
\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)
<span class="mfrac" id="MathJax-Span-48"><span style="display: inline-block; position: relative; width: 2.445em; height: 0px; margin-right: 0.146em; margin-left: 0.146em;"><span style="position: absolute; clip: rect(3.068em 1000.96em 4.361em -999.998em); top: -4.691em; left: 50%; margin-left: -0.477em;"><span class="msubsup" id="MathJax-Span-49"><span style="display: inline-block; position: relative; width: 0.96em; height: 0px;"><span style="position: absolute; clip: rect(3.451em 1000.48em 4.361em -999.998em); top: -4.021em; left: 0em;"><span class="mi" id="MathJax-Span-50" style="font-family: MathJax_Math-italic;">y<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.002em;"></span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; top: -4.404em; left: 0.529em;"><span class="mn" id="MathJax-Span-51" style="font-size: 70.7%; font-family: MathJax_Main;">2</span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; clip: rect(3.307em 1002.25em 4.265em -999.998em); top: -3.35em; left: 50%; margin-left: -1.147em;"><span class="mrow" id="MathJax-Span-52"><span class="mi" id="MathJax-Span-53" style="font-family: MathJax_Math-italic;">z<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.002em;"></span></span><span class="mo" id="MathJax-Span-54" style="font-family: MathJax_Main; padding-left: 0.242em;">+</span><span class="mi" id="MathJax-Span-55" style="font-family: MathJax_Math-italic; padding-left: 0.242em;">x</span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; clip: rect(0.864em 1002.45em 1.2em -999.998em); top: -1.291em; left: 0em;"><span style="display: inline-block; overflow: hidden; vertical-align: 0em; border-top: 1.3px solid; width: 2.445em; height: 0px;"></span><span style="display: inline-block; width: 0px; height: 1.056em;"></span></span></span></span>
Câu hỏi của Vũ Anh Quân - Toán lớp 8 | Học trực tuyến nè nhé b .
Bài này trên diễn đàn có nhiều thực chưa có bài thực sự đúng
\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\) (1)
đk: \(\left\{{}\begin{matrix}x+y\ne0\\x+z\ne0\\y+z\ne0\end{matrix}\right.\) Nếu x+y+z=0\(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)(*)
Thay (*) vào (1)
\(\dfrac{x}{-x}+\dfrac{y}{-y}+\dfrac{z}{-z}=-3\) kết luận: \(x+y+z\ne0\)
Nhân 2 vế (1) với x+y+z khác 0 ta có\(\left(1\right)\Leftrightarrow\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=\left(x+y+z\right)\)
\(\Leftrightarrow\left(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\right)+\left(y+z\right).\dfrac{y}{x+z}+\left(x+y\right).\dfrac{z}{x+y}+\left(x+z\right)\dfrac{x}{y+z}=\left(x+y+z\right)\)
\(\Leftrightarrow\left(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)
Vẫn lỗi:
\(.....\\ \left(x+z\right)\dfrac{x}{y+z}+\left(z+x\right)\dfrac{y}{z+x}+\left(x+y\right)\dfrac{z}{x+y}\)
....