Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{27^4.4^3}{9^5.8^2}\)
=\(\dfrac{3^{12}.2^6}{3^{10}.2^6}\)
=3\(^2\)=9
b)\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}\)
=\(\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}\)
=\(\dfrac{9}{2}\)
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=\dfrac{3^{12}}{3^{10}}=3^2=9\)
_________
\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}=\dfrac{3^{29}.\left(2^2\right)^{16}}{\left(3^3\right)^9.\left(2^3\right)^{11}}=\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}=\dfrac{1}{3^2.2}=\dfrac{1}{9.2}=\dfrac{1}{18}\)
\(\dfrac{8^{14}}{4^4.64^5}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^4.\left(2^5\right)^5}=\dfrac{2^{42}}{2^8.2^{25}}=2^{42-\left(8+25\right)}=2^9\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}=\dfrac{\left(3^2\right)^{10}.\left(3^3\right)^7}{\left(3^4\right)^7.3^{15}}=\dfrac{3^{20}.3^{21}}{3^{28}.3^{15}}=\dfrac{3^{20+21}}{3^{28+15}}=\dfrac{3^{41}}{3^{41}.3^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
a) \(\dfrac{1}{2}.\dfrac{1}{-3}+\dfrac{1}{-3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{-5}+\dfrac{1}{-5}.\dfrac{1}{6}\)
\(=\dfrac{1}{-3}\left(\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{-5}\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\)
\(=\dfrac{1}{-3}.\dfrac{3}{4}+\dfrac{1}{-5}.\dfrac{5}{12}\)
\(=\left(-\dfrac{1}{4}\right)+\left(-\dfrac{1}{12}\right)\)
\(=-\dfrac{1}{3}\)
b) \(A=\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
\(=\dfrac{9^8.9^8.9^{13}.9^{10}}{9^{16}.9^3.9^3}\)
\(=\dfrac{9^{39}}{9^{22}}\)
\(=9^{17}\)
\(A=\dfrac{81^4\cdot3^{10}\cdot27^5\cdot3^{12}}{3^{18}\cdot9^3\cdot243^2}=\dfrac{3^{16}\cdot3^{10}\cdot3^{15}\cdot3^{12}}{3^{18}\cdot3^6\cdot3^{10}}=\dfrac{3^{53}}{3^{34}}=3^{19}\)
Vậy A = 319
Ngân Hà làm đúng phần a) nhưng làm sai phần b) nên mk chỉ làm phần b) thôi
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
Câu 1:
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
\(1,\Leftrightarrow\left(x+\dfrac{1}{3}\right)^2=\dfrac{4}{9}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\\ 2,=15:\left(\dfrac{2}{3}\right)^4\cdot\left(\dfrac{2}{3}\right)^6:\left(\dfrac{2}{3}\right)^9=15\cdot\left(\dfrac{2}{3}\right)^{-7}=15\cdot\dfrac{3^7}{2^7}=15\cdot\dfrac{2187}{128}=\dfrac{32805}{128}\)
\(\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
=\(\dfrac{\left(3^4\right)^4.3^{10}.\left(3^3\right)^5.3^{12}}{3^{18}.\left(3^2\right)^3.\left(3^5\right)^2}\)
= \(\dfrac{3^{16}.3^{10}.3^{15}.3^{12}}{3^{18}.3^6.3^{10}}\)
\(=\dfrac{3^{53}}{3^{34}}\)
= \(3^{19}\)
a: \(=\dfrac{2^5\cdot3^5\cdot2^{12}\cdot2^{16}\cdot5^{16}}{2^{30}\cdot3^{10}\cdot5^{16}}=\dfrac{2^{33}\cdot3^5}{2^{30}\cdot3^{10}}=\dfrac{8}{243}\)
c: \(=\dfrac{4^7\cdot3^{12}\cdot5^4+3^{12}\cdot5^6\cdot4^7}{2^{14}\cdot3^{14}\cdot5^4+2^{14}\cdot3^{14}\cdot5^6}\)
\(=\dfrac{2^{14}\cdot3^{12}\cdot5^4\left(1+25\right)}{2^{14}\cdot3^{14}\cdot5^4\left(1+25\right)}=\dfrac{1}{9}\)
a: \(=\dfrac{2^5\cdot2^{12}\cdot2^6}{2^{24}}=\dfrac{1}{2}\)
b: \(=\dfrac{12-15}{20}\cdot\left(\dfrac{10-6}{30}\right)^2\)
\(=\dfrac{-3}{20}\cdot\left(\dfrac{2}{15}\right)^2=\dfrac{-3}{20}\cdot\dfrac{4}{225}=-\dfrac{1}{375}\)
c: \(=3\cdot\dfrac{2}{5}+2:\dfrac{1}{4}=1.2+8=9.2\)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
\(1.\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
\(2.\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2}{3}\)
Ý 1:
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
Ý 2:
\(\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{\left(2^3\right)^5.3^{15}}{2^{14}.\left(3^4\right)^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2^{14}.2.3^{15}}{2^{14}.3^{15}.3}=\dfrac{2}{3}\)