Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{2}.\dfrac{1}{-3}+\dfrac{1}{-3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{-5}+\dfrac{1}{-5}.\dfrac{1}{6}\)
\(=\dfrac{1}{-3}\left(\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{-5}\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\)
\(=\dfrac{1}{-3}.\dfrac{3}{4}+\dfrac{1}{-5}.\dfrac{5}{12}\)
\(=\left(-\dfrac{1}{4}\right)+\left(-\dfrac{1}{12}\right)\)
\(=-\dfrac{1}{3}\)
b) \(A=\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
\(=\dfrac{9^8.9^8.9^{13}.9^{10}}{9^{16}.9^3.9^3}\)
\(=\dfrac{9^{39}}{9^{22}}\)
\(=9^{17}\)
\(A=\dfrac{81^4\cdot3^{10}\cdot27^5\cdot3^{12}}{3^{18}\cdot9^3\cdot243^2}=\dfrac{3^{16}\cdot3^{10}\cdot3^{15}\cdot3^{12}}{3^{18}\cdot3^6\cdot3^{10}}=\dfrac{3^{53}}{3^{34}}=3^{19}\)
Vậy A = 319
Ngân Hà làm đúng phần a) nhưng làm sai phần b) nên mk chỉ làm phần b) thôi
\(A=\frac{81^4.3^{10}.27^5:3^{12}}{3^{18}:9^3.243^2}=\frac{3^{16}.3^{10}.3^{15}:3^{12}}{3^{18}:3^6.3^{10}}=\frac{3^{29}}{3^{22}}=3^7\)
\(B=\frac{2.55^2-9.55^{21}}{25^{10}}:\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{2.55^2-9.55^2.55^{19}}{25^{10}}:\frac{5\left(21.7^{14}-19.7^{14}\right)}{7.7^{15}+3.7^{15}}=\frac{55^2\left(55^{19}.9-2\right)}{25^{10}}:\frac{5.7^{14}.2}{7^{15}.10}=\frac{55^2\left(55^{19}.9-2\right)}{25^{10}}.\frac{7^{15}.10}{5.7^{14}.2}\)Chịu ==
a: \(=\dfrac{2^4\cdot3^6\cdot2\cdot3}{2^4\cdot3^6}=6\)
b: \(=\dfrac{2^{20}\cdot3^{20}}{2^{18}\cdot3^{18}}=2^2\cdot3^2=36\)
c: \(=\dfrac{12^5\cdot13}{12^6\cdot13}-\dfrac{12^8\cdot\left(-11\right)}{12^9\cdot\left(-11\right)}=\dfrac{1}{12}-\dfrac{1}{12}=0\)
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
=\(\frac{2^{30}3^{16}.5^{50}.7+2^{30}.3^{15}.3^2.11.5^{48}}{11.2^{25}.2^4.5^4.3^{18}.5^{18}.5^{30}-2^{30}.5^{30}.5^{22}.3^{18}}\)
=\(\frac{2^{30}.3^{16}.5^{50}.7+2^{30}.3^{17}.11.5^{48}}{11.2^{29}.5^{52}.3^{18}-2^{30}.5^{52}.3^{18}}\)
=\(\frac{2^{30}.3^{16}.5^{48}.11\left(5^2.7+3\right)}{2^{29}.5^{52}.3^{18}.11\left(1-2\right)}\)
=\(\frac{2.\left(5^2.7+3\right)}{5^4.3^2\left(1-2\right)}\)
=\(\frac{2.178}{5^4.3^2.\left(-1\right)}\)
=\(\frac{356}{-5625}\)
Hk tốt
Câu 1 :
\(\text{a) }B=\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\\ B=\dfrac{\left(2^2\right)^6\cdot\left(3^2\right)^5+\left(2\cdot3\right)^9\cdot\left(2^3\cdot3\cdot5\right)}{\left(2^3\right)^4\cdot3^{12}-6^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-\left(2\cdot3\right)^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\\ B=\dfrac{2\cdot6}{3\cdot5}\\ B=\dfrac{4}{5}\\ \)
\(\text{b) }C=\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\\ C=\dfrac{5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9}{5\cdot2^9\cdot\left(2\cdot3\right)^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}}{5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{2^{29}\cdot3^{18}\left(10-9\right)}{2^{28}\cdot3^{18}\left(15-14\right)}\\ C=\dfrac{2^{29}\cdot3^{18}}{2^{28}\cdot3^{18}}\\ C=2\\ \)
\(\text{c) }D=\dfrac{49^{24}\cdot125^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot4^5}{5^{29}\cdot16^2\cdot7^{48}}\\ D=\dfrac{\left(7^2\right)^{24}\cdot\left(5^3\right)^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot\left(2^2\right)^5}{5^{29}\cdot\left(2^4\right)^2\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1-28\right)}{5^{29}\cdot2^8\cdot7^{48}}\\ D=5\cdot\left(-27\right)\\ D=-135\)
Câu 2 :
\(\text{a) }9^{x+1}-5\cdot3^{2x}=324\\ \Leftrightarrow9^x\cdot9-5\cdot9^x=81\cdot4\\ \Leftrightarrow9^x\left(9-5\right)=9^2\cdot4\\ \Leftrightarrow9^x\cdot4=9^2\cdot4\\ \Leftrightarrow9^x=9^2\\ \Leftrightarrow x=2\\ \text{Vậy }x=2\\ \)
Sorry . Mình chỉ biết đến đây thôi
\(1.\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
\(2.\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2}{3}\)
Ý 1:
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
Ý 2:
\(\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{\left(2^3\right)^5.3^{15}}{2^{14}.\left(3^4\right)^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2^{14}.2.3^{15}}{2^{14}.3^{15}.3}=\dfrac{2}{3}\)
\(\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
=\(\dfrac{\left(3^4\right)^4.3^{10}.\left(3^3\right)^5.3^{12}}{3^{18}.\left(3^2\right)^3.\left(3^5\right)^2}\)
= \(\dfrac{3^{16}.3^{10}.3^{15}.3^{12}}{3^{18}.3^6.3^{10}}\)
\(=\dfrac{3^{53}}{3^{34}}\)
= \(3^{19}\)