Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{2}.\dfrac{1}{-3}+\dfrac{1}{-3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{-5}+\dfrac{1}{-5}.\dfrac{1}{6}\)
\(=\dfrac{1}{-3}\left(\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{-5}\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\)
\(=\dfrac{1}{-3}.\dfrac{3}{4}+\dfrac{1}{-5}.\dfrac{5}{12}\)
\(=\left(-\dfrac{1}{4}\right)+\left(-\dfrac{1}{12}\right)\)
\(=-\dfrac{1}{3}\)
b) \(A=\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
\(=\dfrac{9^8.9^8.9^{13}.9^{10}}{9^{16}.9^3.9^3}\)
\(=\dfrac{9^{39}}{9^{22}}\)
\(=9^{17}\)
\(A=\dfrac{81^4\cdot3^{10}\cdot27^5\cdot3^{12}}{3^{18}\cdot9^3\cdot243^2}=\dfrac{3^{16}\cdot3^{10}\cdot3^{15}\cdot3^{12}}{3^{18}\cdot3^6\cdot3^{10}}=\dfrac{3^{53}}{3^{34}}=3^{19}\)
Vậy A = 319
Ngân Hà làm đúng phần a) nhưng làm sai phần b) nên mk chỉ làm phần b) thôi
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
\(\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
=\(\dfrac{\left(3^4\right)^4.3^{10}.\left(3^3\right)^5.3^{12}}{3^{18}.\left(3^2\right)^3.\left(3^5\right)^2}\)
= \(\dfrac{3^{16}.3^{10}.3^{15}.3^{12}}{3^{18}.3^6.3^{10}}\)
\(=\dfrac{3^{53}}{3^{34}}\)
= \(3^{19}\)
a: \(=\dfrac{2^5\cdot3^5\cdot2^{12}\cdot2^{16}\cdot5^{16}}{2^{30}\cdot3^{10}\cdot5^{16}}=\dfrac{2^{33}\cdot3^5}{2^{30}\cdot3^{10}}=\dfrac{8}{243}\)
c: \(=\dfrac{4^7\cdot3^{12}\cdot5^4+3^{12}\cdot5^6\cdot4^7}{2^{14}\cdot3^{14}\cdot5^4+2^{14}\cdot3^{14}\cdot5^6}\)
\(=\dfrac{2^{14}\cdot3^{12}\cdot5^4\left(1+25\right)}{2^{14}\cdot3^{14}\cdot5^4\left(1+25\right)}=\dfrac{1}{9}\)
3. Từ \(\dfrac{x-2}{27}=\dfrac{3}{x-2}\Rightarrow\left(x-2\right)^2=81\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm9\right)^2\\ \Rightarrow\left[{}\begin{matrix}x-2=-9\\x-2=9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=11\end{matrix}\right.\)
Vậy x = -7 hoặc x = 11
4. Từ \(\dfrac{2x+5}{9-2x}=\dfrac{2}{5}\)
\(\Rightarrow5\left(2x+5\right)=2\left(9-2x\right)\\ \Leftrightarrow10x+25=18-4x\\ \Leftrightarrow14x=-7\\ \Rightarrow x=-\dfrac{1}{2}\)
5. Từ \(\dfrac{x-7}{x+8}=\dfrac{x-8}{x+9}\)
\(\Rightarrow\left(x-7\right)\left(x+9\right)=\left(x-8\right)\left(x+8\right)\\ \Leftrightarrow x^2+2x-63=x^2-64\\ \Leftrightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
a: \(=\dfrac{2^5\cdot2^{12}\cdot2^6}{2^{24}}=\dfrac{1}{2}\)
b: \(=\dfrac{12-15}{20}\cdot\left(\dfrac{10-6}{30}\right)^2\)
\(=\dfrac{-3}{20}\cdot\left(\dfrac{2}{15}\right)^2=\dfrac{-3}{20}\cdot\dfrac{4}{225}=-\dfrac{1}{375}\)
c: \(=3\cdot\dfrac{2}{5}+2:\dfrac{1}{4}=1.2+8=9.2\)
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
*** \(\dfrac{15-x}{8}=\dfrac{x-23}{10}\)
\(\Rightarrow10\left(15-x\right)=8\left(x-23\right)\)
\(\Rightarrow150-10x=8x-184\)
\(\Rightarrow150+184=10x+8x\)
\(\Rightarrow18x=334\)
\(\Rightarrow x=\dfrac{167}{9}\)
*** \(\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right).\left(2015\right)^0\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right).1\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|=\left(-\dfrac{1}{2}\right)+3\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|=\dfrac{29}{10}\)
\(\Rightarrow\left|2x-1\right|=\dfrac{29}{10}:\dfrac{1}{2}\)
\(\Rightarrow\left|2x-1\right|=\dfrac{29}{5}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=\dfrac{29}{5}\\2x-1=-\dfrac{29}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{34}{5}\\2x=-\dfrac{24}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
Bài 2 từ dòng 2 đến dòng 7 nên dùng dấu \(\Leftrightarrow \) mới đúng em nhé.
\(1.\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
\(2.\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2}{3}\)
Ý 1:
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=3^2=9\)
Ý 2:
\(\dfrac{8^5.3^{15}}{2^{14}.81^4}=\dfrac{\left(2^3\right)^5.3^{15}}{2^{14}.\left(3^4\right)^4}=\dfrac{2^{15}.3^{15}}{2^{14}.3^{16}}=\dfrac{2^{14}.2.3^{15}}{2^{14}.3^{15}.3}=\dfrac{2}{3}\)