K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 12 2018

1/

\(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n\left(n^2+3n+2\right)+2010n^2\)

\(=n\left(n+1\right)\left(n+2\right)+2010n^2\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

Lại có \(2010⋮6\Rightarrow2010n^2⋮6\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) (đpcm)

2/ Giả sử A là số chính phương, đặt \(A=k^2\) với \(k\in N\)

\(\Rightarrow n^2+10n+136=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\)

\(\Leftrightarrow\left(n+5\right)^2-k^2=-111\Leftrightarrow\left(n+k+5\right)\left(n-k+5\right)=-111\)

Do \(n+k+5\ge5\) nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}n+k+5=37\\n-k+5=-3\end{matrix}\right.\) \(\Rightarrow n=12\)

TH2: \(\left\{{}\begin{matrix}n+k+5=111\\n-k+5=-1\end{matrix}\right.\) \(\Rightarrow n=50\)

Vậy \(n=\left\{12;50\right\}\)

30 tháng 12 2018

1.

Ta có \(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n^3+n^2+2n^2+2n+2010n^2=n^2\left(n+1\right)+2n\left(n+1\right)+2010n^2=\left(n+1\right)\left(n^2+2n\right)+2010n^2=n\left(n+1\right)\left(n+2\right)+2010n^2\)

Ta lại có \(n\left(n+1\right)\left(n+2\right)\) là 3 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(1\right)\)

\(2010⋮6\Leftrightarrow2010n^2⋮6\left(2\right)\)

Từ (1),(2)\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) hay \(n^3+2013n^2+2n⋮6\)

2.

Đặt \(n^2+10n+136=k^2\left(k\in N\right)\Leftrightarrow n^2+2.n.5+25+111=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\Leftrightarrow111=k^2-\left(n+5\right)^2\Leftrightarrow\left(k+n+5\right)\left(k-n-5\right)=111\)(*)

Vì 111 là số nguyên tố và k+n+5>k-n-5

Vậy (*)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n+5=111\\k-n-5=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n=106\\k-n=6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k=56\\n=50\end{matrix}\right.\)

Vậy n=50 thì n2+10n+136 là số chính phương

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

12 tháng 1 2019

các số chứ ko phải cặp số nha

12 tháng 1 2019

mới có lớp 6 thôi à

31 tháng 1 2021

Xét n=0 không thỏa mãn.

Xét n≥1

Với n∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1

⇔A<(n2+n+2)2

Như vậy (n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì

A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2

⇔−n2−n+6=0⇔(n−2)(n+3)=0

Suy ra