K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
3 tháng 6 2019
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
NC
1
31 tháng 1 2021
Xét không thỏa mãn.
Xét
Với thì:
Mặt khác, xét :
với mọi
Như vậy , suy ra để $A$ là số chính phương thì
Suy ra
1/
\(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n\left(n^2+3n+2\right)+2010n^2\)
\(=n\left(n+1\right)\left(n+2\right)+2010n^2\)
Do \(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
Lại có \(2010⋮6\Rightarrow2010n^2⋮6\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) (đpcm)
2/ Giả sử A là số chính phương, đặt \(A=k^2\) với \(k\in N\)
\(\Rightarrow n^2+10n+136=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\)
\(\Leftrightarrow\left(n+5\right)^2-k^2=-111\Leftrightarrow\left(n+k+5\right)\left(n-k+5\right)=-111\)
Do \(n+k+5\ge5\) nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}n+k+5=37\\n-k+5=-3\end{matrix}\right.\) \(\Rightarrow n=12\)
TH2: \(\left\{{}\begin{matrix}n+k+5=111\\n-k+5=-1\end{matrix}\right.\) \(\Rightarrow n=50\)
Vậy \(n=\left\{12;50\right\}\)
1.
Ta có \(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n^3+n^2+2n^2+2n+2010n^2=n^2\left(n+1\right)+2n\left(n+1\right)+2010n^2=\left(n+1\right)\left(n^2+2n\right)+2010n^2=n\left(n+1\right)\left(n+2\right)+2010n^2\)
Ta lại có \(n\left(n+1\right)\left(n+2\right)\) là 3 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(1\right)\)
Mà \(2010⋮6\Leftrightarrow2010n^2⋮6\left(2\right)\)
Từ (1),(2)\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) hay \(n^3+2013n^2+2n⋮6\)
2.
Đặt \(n^2+10n+136=k^2\left(k\in N\right)\Leftrightarrow n^2+2.n.5+25+111=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\Leftrightarrow111=k^2-\left(n+5\right)^2\Leftrightarrow\left(k+n+5\right)\left(k-n-5\right)=111\)(*)
Vì 111 là số nguyên tố và k+n+5>k-n-5
Vậy (*)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n+5=111\\k-n-5=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n=106\\k-n=6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k=56\\n=50\end{matrix}\right.\)
Vậy n=50 thì n2+10n+136 là số chính phương