K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Để chứng minh phân số đó tối giản, ta phải chứng minh được chúng là 2 số nguyên tố cùg nhau

Tham khảo :

Gọi d = ƯCLN ( 2n + 3 ; 3n + 5 )

=> 2n + 3 chia hết cho d

3n + 5 chia hết cho d

=> 3 ( 2n + 3 ) chia hết cho d

2 ( 3n + 5 ) chia hêt cho d

=> 6n + 9 và 6n + 10 chia hết cho d

=> 1 chia hết cho d => d = 1

=> 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau

Vậy phân số 2n + 3 / 3n + 5 là phân số tối giản

27 tháng 2 2018

Gọi d là ƯC(2n+3; 3n+5)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+9\right)-\left(6n+10\right)⋮d\)

\(\Rightarrow6n+9-6n-10⋮d\)

\(\Rightarrow\left(6n-6n\right)-\left(10-9\right)⋮d\)

\(\Rightarrow0-1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯC\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\frac{2n+3}{3n+5}\) là phân số tối giản