Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{8}; - 0,2\) là các số hữu tỉ
b) \( - \sqrt 3 ;\pi \) là các số vô tỉ
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Ta có: \(3,\left( {45} \right) = \frac{{38}}{{11}}\); \( - 45 = \frac{{ - 45}}{1};\,\,0 = \frac{0}{1}\) do đó:
Các số hữu tỉ là: \(\frac{2}{3};\,3,\left( {45} \right);\, - 45;\,0\).
Các số vô tỉ là: \(\sqrt 2 ;\, - \sqrt 3 ;\,\pi \).
Chú ý:
Số thập phân vô hạn tuần hoàn cũng là số hữu tỉ.
a) \(\sqrt 2 ;\,\sqrt 3 ;\,\sqrt 5 \) là các số thực => Đúng
b) Số nguyên không là số thực => Sai (Do Tất cả các số nguyên đều là số thực)
c) \( - \frac{1}{2};\frac{2}{3};\, - 0,45\) là các số thực => Đúng
d) Số 0 vừa là số hữu tỉ vừa là số vô tỉ => Sai (Do số 0 không là số vô tỉ)
e) 1; 2; 3; 4 là các số thực => Đúng.
Chú ý:
Số thực là tập hợp số lớn nhất, bao gồm tất cả các tập hợp số đã được học.
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
bạn dùng máy tính ấn. \(\sqrt{8}\). Nó ra hàng chữ dài thì nó là số vô tỉ
Giả sử \(\sqrt{8}\)là số hữu tỉ
\(\Rightarrow\sqrt{8}=\frac{a}{b}\left(a,b\in Q;b\ne0;\left(a;b\right)=1\right)\)
\(\Rightarrow8=\frac{a^2}{b^2}\Rightarrow a^2=8b^2\)
Vì \(\frac{a}{b}\)là số hữu tỉ \(\Rightarrow a^2⋮8\Leftrightarrow a⋮8\)
Vì \(a⋮8\Rightarrow a=8k\Rightarrow a^2=64k^2\)
Ta lại có \(8=\frac{a^2}{b^2}\Rightarrow a^2=8b^2\Rightarrow64k^2:8=b^2\Rightarrow8k^2=b^2\)
\(\Rightarrow b^2⋮8\Leftrightarrow b⋮8\)
Vì \(a⋮8;b⋮8\)trái với (a;b) = 1
\(\Rightarrow\sqrt{8}\)là số vô tỉ
\(\RightarrowĐPCM\)
b số vô tỉ
1,Chứng minh:
a, √8 là số hữu tỉ
b, √8là số vô tỉ
lấy máy tính tính xong xét