Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Chứng minh đẳng thức :
a) (a - b + c) - (a + c) = -b
(a - b + c) - (a + c)
=a-b+c-a-c
=(a-a)+(c-c)-b
=0+0-b
=-b
b) (a + b) - (b - a) + c = 2a + c
(a + b) - (b - a) + c
=a+b-b+a+c
=(a+a)+(b-b)+c
=2a+0+c
=2a+c
c) -( a + b - c) + (a- b- c) = -2b
-( a + b - c) + (a- b- c)
=-a-b+c+a-b-c
=[a+(-a)]+[c+(-c)]-b-b
=0+0-(b+b)
=-2b
d) a( b+c) - a (b +d) =a( c-d )
a( b+c) - a (b +d)
=ab+ac-(ab+ad)
=(ab-ab)+ac-ad
=0+ac-ad
=a(c-d)
e) a (b - c) + a( d+ c) = a( b+d)
a (b - c) + a( d+ c)
=ab-ac+ad+ac
=(ac+(-ac))+ad+ab
=0+ad+ab
=a(d+b)
1
a) \( (a - b + c) - (a + c) \)
\(=\left(a+c-b\right)-\left(a+c\right)\)
\(=\left[\left(a-c\right)-\left(a-c\right)\right]-b\)
\(=0-b\)
\(=-b\)
b) \( (a + b) - (b - a) + c \)
\(=a+b-b+a+c\)
\(=\left(a+a\right)+\left(b-b\right)+c\)
\(=\left(a+a\right)-0+c\)
\(=a+a+c\)
\(=2a+c\)
2
\(P=a+ [( a - 3 ) - (-a - 2)]\)
\(P=a+a-3+a+2\)
\(P=a+a+a-3+2\)
\(P=3a-3+2\)
\(P=0+2\)
\(P=2\)
\(Q=[a + (a +3)] - [( a + 2) - ( a - 2)]\)
\(Q=a+a+3-a-2-a+2\)
\(Q=a+a+3-a+\left(-2-a+2\right)\)
\(Q=2a+3-a+a\)
\(Q=2a+3-2a\)
\(Q=3\)
Vì \(P=2;Q=3\Rightarrow P< Q\)
Bài 1 :
Ta có : P = a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}
= a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}
= a . ( a - 3 -a - 3 - a + 2 )
= a . ( - a - 8 ) = -8a -a2
: Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]
= a + a + 3 - a - 2 - a - 2
= -1
Ta thấy -1> -8a - a2 => Q > P
Bài 2 :
Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b
<=> a - b + c = a - b + c = a + c - b
do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm)
Bài 3:
a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d )
<=> a - b + c - d = a + c - b - d
<=> a - a + c - c - b + b - d + d = 0
<=> 0 = 0 => VP = VT ( đpcm)
b) a - b - ( c- d ) = ( a + d ) - ( b + c )
<=> a - b - c + d = a + d - b -c
<=> a - a - b + b - c + c + d -d = 0
<=> 0 =0 => VP = VT ( đpcm )
1,( a + b ) - ( b - a) +c
= a + b - b + a + c
= ( a + a ) + ( b - b ) + c
= 2a + c
2. - ( a + b - c) + ( a - b - c )
= -a -b +c + a - b - c
= ( -a + a ) - ( b + b ) + ( c - c )
= -2b
mấy câu sau bn tự giải nhá. MỆT
Ta có:
Vế trái: -a.(c-d)-d.(a+c)
=-ac+ad-ad-cd
=-ac-cd (1)
Vế phải: -c(a+d)=-ac-cd (1)
Vì (1)=(2)
<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)
(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)
Lời giải:
1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)
$=-ac+ad-da-dc$
$=-ac-dc$
$=-c(a+d) (đpcm)$
$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=21$
Vậy giá trị biểu thức không phụ thuộc vào a
a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )
b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )
c) * Suy nghĩ các thứ *
a(b+c)-[a(-b-d)]=-a(bc-d)
\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)
\(VP=a\left(bc-d\right)=-abc+ad\)
2 đẳng thức này sau khi rút gọn không = nhau
=> 2 đẳng thức này k bằng nhau
1) a( b+c) - b(a-c) = ( a+b) c
VT = a( b+c) - b(a-c)
= ab + ac - ab + bc
= ac + bc
= c(a + b) (=VP)
2)a (b - c)- a (b+d)= - a (c+d)
VT= a (b - c)- a (b+d)
= ab - ac - ab - ad
= -ac - ad
= -a(c + d) (=VP)
\(\left(a-b+c\right)-\left(a+c\right)=a-b+c-a-c=-b\left(ĐPCM\right)\\ \left(a+b\right)-\left(b-a\right)+c=a+b-b+a+c=2a+c\left(ĐPCM\right)\\ -\left(a+b-c\right)+\left(a-b-c\right)=-a-b+c+a-b-c=-2b\left(ĐPCM\right)\\ a\left(b+c\right)-a\left(b+d\right)=a\left[\left(b+c\right)-\left(b+d\right)\right]=a\left(b+c-b-d\right)=a\left(c-d\right)\left(ĐPCM\right)\\ a\left(b-c\right)+a\left(d+c\right)=a\left(b-c+d+c\right)=a\left(b+d\right)\left(ĐPCM\right)\)
lớp 6 có cm đẳng thức hử?
a,(a-b-c)-(a+c)=-b
suy ra:a-b-c-a-c=-b
(a-a)-(c-c)-b=-b
0-b=-b