Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà AB // CD và AB = CD nên MN // PQ và MN = PQ
⇒ Tứ giác MNPQ là hình bình hành.
Tương tự NP // BC mà AB ⊥ BC nên MN ⊥ NP. Do đó MNPQ là hình chữ nhật.
Trong ΔABC ta có
Vậy SMNPQ = MN.PQ = 3.4 = 12 (cm2).
b)Dễ thấy ΔAOB = ΔCOD (c.c.c).
Tương tự ΔMON = ΔPOQ
Do đó: SAOB = SCOD và SMON = SPOQ.
⇒ SAOB - SMON = SCOD - SPOQ hay SAMNB = SCPQD.
Do ABCD là hình thoi :
=) AB // CD=) AM // CN
Do AM // CN
=) \(\widehat{MAO}\)=\(\widehat{NCO}\) ( 2 góc so le trong )
Do ABCD là hình thoi:
Mà O là giao điểm của 2 đường chéo
=) AO=CO ( vì hình thoi có tất cả các tính chất hình bình hành ) =) O là trung điểm của AC
Xét tam giác AOM và tam giác CON có :
\(\widehat{AOM}\)=\(\widehat{CON}\)( đối đỉnh )
AO=CO
\(\widehat{MAO}\)=\(\widehat{NCO}\)(chứng minh trên)
=) Tam giác AOM = Tam giác CON ( g-c-g )
b) Do tam giác AOM = Tam giác CON ( chứng minh phần a)
=) OM=ON (2 cạch tương ứng)
=) O là trung điểm của MN
Xét tứ giác AMCN có :
2 đường chéo AC và MN cắt nhau tại trung điểm O
=) AMCN là hình bình hành
a) Trong hình thoi ABCD có:
\(\widehat{BAD}=\widehat{BCD}\)(2 góc đối của hình thoi)
\(\Rightarrow\widehat{BAO}+\widehat{OAD}=\widehat{BCO}+\widehat{OCD}\)
\(\Rightarrow\widehat{BAO}=\widehat{OAD}=\widehat{BCO}=\widehat{OCD}\)(2 đường chéo là tia phân giác của các góc)
\(\Rightarrow\widehat{MAO}=\widehat{OAD}=\widehat{BCO}=\widehat{OCD}\)
Xét \(\Delta AOM\)và \(\Delta CON\)có:
\(\widehat{MOA}=\widehat{NOC}\)(2 góc đối đỉnh)
\(OA=OC\)(2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\widehat{MAO}=\widehat{NCO}\)(Chứng minh trên)
Do đó \(\Delta AOM=\Delta CON\left(g.c.g\right)\)
b) Vì \(\Delta AOM=\Delta CON\)(câu a)
\(\Rightarrow OM=ON\)(2 cạnh tương ứng)
Tứ giác AMCN có:
OA = OC (gt)
OM = ON (chứng minh trên)
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
a) hình bình hành ABCD có:
O là giao điểm của AC và BD
=> O là trung điểm của AC và BD
xét tam giác AOM và tam giác NOC có:
AO= CO
góc A² = góc C¹ (so le trong)
góc O¹=góc O² (đối đỉnh)
=> tam giác AOM=tam giác CON(g.c.g) => OM =ON
=> M đối xứng với N qua O
b) tam giác AOM= tam giác CON nên
=> AM= CN, AM // CN
=> tứ giác AMNC là hình bình hành
a: Xét ΔMAO và ΔNCO có
\(\widehat{MAO}=\widehat{NCO}\)
OA=OC
\(\widehat{AOM}=\widehat{CON}\)
Do đó: ΔMAO=ΔNCO
Suy ra: MO=NO
hay M đối xứng với N qua O
Câu 20:
a: \(2x^3-8x^2+8x=2x\left(x-2\right)^2\)
b: \(2xy+2x+yz+z=\left(y+1\right)\left(2x+z\right)\)
c: \(x^2+2x+1-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
Cau 20:
a: \(2x^3-8x^2+8x=2x\left(x-2\right)^2\)
b: \(2xy+2x+yz+z=\left(y+1\right)\left(2x+z\right)\)
c: \(x^2+2x+1-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
Câu 20:
a: \(2x^3-8x^2+8x\)
\(=2x\left(x^2-4x+4\right)\)
\(=2x\left(x-2\right)^2\)
b: \(2xy+2x+yz+z\)
\(=2x\left(y+1\right)+z\left(y+1\right)\)
\(=\left(y+1\right)\left(2x+z\right)\)
\(19,\\ a,=4x^3-4x^2-4x-2x^2+x+1=4x^3-6x^2-3x+1\\ b,=2x^2+4x-1\\ c,=\left(6x^3+9x^2-16x^2-24x+8x+12\right):\left(2x+3\right)\\ =\left(2x+3\right)\left(3x^2-8x+4\right):\left(2x+3\right)=3x^2-8x+4\)
\(20,\\ a,=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\\ b,=2x\left(y+1\right)+z\left(y+1\right)=\left(y+1\right)\left(2x+z\right)\\ c,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\)
\(21,\)
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow3x^2+5x+m=\left(x-2\right)\cdot C\left(x\right)\)
Thay \(x=2\Leftrightarrow12+10+m=0\Leftrightarrow m=-22\)